Method in Identifying the Parameters of Magic Formula Tire Model Based on New Self-adaptive Differential Evolution

2014 ◽  
Vol 50 (6) ◽  
pp. 120 ◽  
Author(s):  
Qian WANG
2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


2020 ◽  
Author(s):  
Saswata Nandi ◽  
M. Janga Reddy

Abstract Recently, physically-based hydrological models have been gaining much popularity in various activities of water resources planning and management, such as assessment of basin water availability, floods, droughts, and reservoir operation. Every hydrological model contains some parameters that must be tuned to the catchment being studied to obtain reliable estimates from the model. This study evaluated the performance of different evolutionary algorithms, namely genetic algorithm (GA), shuffled complex evolution (SCE), differential evolution (DE), and self-adaptive differential evolution (SaDE) algorithm for the parameter calibration of a computationally intensive distributed hydrological model, variable infiltration capacity (VIC) model. The methodology applied and tested for a case study of the upper Tungabhadra River basin in India, and the performance of the algorithms is evaluated in terms of reliability, variability, efficacy measures in a limited number of function evaluations, their ability for achieving global convergence, and also by their capability to produce a skillful simulation of streamflows. The results of the study indicated that SaDE facilitates an effective calibration of the VIC model with higher reliability and faster convergence to optimal solutions as compared to the other methods. Moreover, due to the simplicity of the SaDE, it provides easy implementation and flexibility for the automatic calibration of complex hydrological models.


2019 ◽  
Vol 17 (2) ◽  
pp. 4-14
Author(s):  
Guilherme Felippe Plichoski ◽  
Chidambaram Chidambaram ◽  
Rafael Stubs Parpinelli

Sign in / Sign up

Export Citation Format

Share Document