Dynamic Analysis of A New Forging Manipulator’s Main Motion Mechanism Based on the Principle of Virtual Work

2016 ◽  
Vol 52 (9) ◽  
pp. 18 ◽  
Author(s):  
Huafeng DING
1997 ◽  
Vol 119 (4) ◽  
pp. 831-833 ◽  
Author(s):  
Fan Zijie ◽  
Lu Bingheng ◽  
C. H. Ku

The main objective of this work is to predict the effect of distributed viscoelastic damping on the dynamic response of multilink flexible robot manipulators. A general approach, based on the principle of virtual work, is presented for the modeling of flexible robot arms with distributed viscoelastic damping. The finite element equations are developed, and a recurrence formulation for numerical integration of these equations is obtained. It is demonstrated, by a numerical example, that the viscoelastic damping treatments have a significant effect on the dynamic response of flexible robot manipulators.


Author(s):  
Jiegao Wang ◽  
Clément M. Gosselin

Abstract The dynamic analysis of spatial four-degree-of-freedom parallel manipulators is presented in this article. First, expressions for the position, velocity and acceleration of each link constituting the manipulators are obtained. Then, the principle of virtual work is used to derive the generalized input forces of the manipulators. The corresponding algorithm is implemented and numerical examples are given in order to illustrate the results. The results obtained are verified using the classical Newton-Euler approach.


2001 ◽  
Author(s):  
Miguel Almonacid ◽  
Sunil K. Agrawal ◽  
Rafael Aracil ◽  
Roque J. Saltarén

Abstract This paper presents the dynamic analysis of a six-degree of freedom (dof) parallel robot based on multibody dynamics. The robot is also known as Stewart-Gough platform. The inverse and forward dynamic analysis is presented based on the Newton-Euler formulation with the imposition of the constraints through Lagrange multipliers and the application of the principle of virtual work. The singularity problem within the workspace is also focused and 3D surfaces where the robot reach singular configurations are shown. Finally, simulations for the inverse and forward dynamic of the robot have been carried out showing the computational cost.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Sign in / Sign up

Export Citation Format

Share Document