The complex error functions and various extensive results together with implications pertaining to certain special functions

Metrologiya ◽  
2020 ◽  
pp. 3-15
Author(s):  
Rustam Z. Khayrullin ◽  
Alexey S. Kornev ◽  
Andrew A. Kostoglotov ◽  
Sergey V. Lazarenko

Analytical and computer models of false failure and undetected failure (error functions) were developed with tolerance control of the parameters of the components of the measuring technique. A geometric interpretation of the error functions as two-dimensional surfaces is given, which depend on the tolerance on the controlled parameter and the measurement error. The developed models are applicable both to theoretical laws of distribution, and to arbitrary laws of distribution of the measured quantity and measurement error. The results can be used in the development of metrological support of measuring equipment, the verification of measuring instruments, the metrological examination of technical documentation and the certification of measurement methods.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Péter Sipos

AbstractStudies comparing numerous sorption curve models and different error functions are lacking completely for soil-metal adsorption systems. We aimed to fill this gap by studying several isotherm models and error functions on soil-metal systems with different sorption curve types. The combination of fifteen sorption curve models and seven error functions were studied for Cd, Cu, Pb, and Zn in competitive systems in four soils with different geochemical properties. Statistical calculations were carried out to compare the results of the minimizing procedures and the fit of the sorption curve models. Although different sorption models and error functions may provide some variation in fitting the models to the experimental data, these differences are mostly not significant statistically. Several sorption models showed very good performances (Brouers-Sotolongo, Sips, Hill, Langmuir-Freundlich) for varying sorption curve types in the studied soil-metal systems, and further models can be suggested for certain sorption curve types. The ERRSQ error function exhibited the lowest error distribution between the experimental data and predicted sorption curves for almost each studied cases. Consequently, their combined use could be suggested for the study of metal sorption in the studied soils. Besides testing more than one sorption isotherm model and error function combination, evaluating the shape of the sorption curve and excluding non-adsorption processes could be advised for reliable data evaluation in soil-metal sorption system.


2020 ◽  
Vol 70 (3) ◽  
pp. 599-604
Author(s):  
Şahsene Altinkaya

AbstractIn this present investigation, we will concern with the family of normalized analytic error function which is defined by$$\begin{array}{} \displaystyle E_{r}f(z)=\frac{\sqrt{\pi z}}{2}\text{er} f(\sqrt{z})=z+\overset{\infty }{\underset {n=2}{\sum }}\frac{(-1)^{n-1}}{(2n-1)(n-1)!}z^{n}. \end{array}$$By making the use of the trigonometric polynomials Un(p, q, eiθ) as well as the rule of subordination, we introduce several new classes that consist of 𝔮-starlike and 𝔮-convex error functions. Afterwards, we derive some coefficient inequalities for functions in these classes.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shu-Bo Chen ◽  
Saima Rashid ◽  
Muhammad Aslam Noor ◽  
Zakia Hammouch ◽  
Yu-Ming Chu

Abstract Inequality theory provides a significant mechanism for managing symmetrical aspects in real-life circumstances. The renowned distinguishing feature of integral inequalities and fractional calculus has a solid possibility to regulate continuous issues with high proficiency. This manuscript contributes to a captivating association of fractional calculus, special functions and convex functions. The authors develop a novel approach for investigating a new class of convex functions which is known as an n-polynomial $\mathcal{P}$ P -convex function. Meanwhile, considering two identities via generalized fractional integrals, provide several generalizations of the Hermite–Hadamard and Ostrowski type inequalities by employing the better approaches of Hölder and power-mean inequalities. By this new strategy, using the concept of n-polynomial $\mathcal{P}$ P -convexity we can evaluate several other classes of n-polynomial harmonically convex, n-polynomial convex, classical harmonically convex and classical convex functions as particular cases. In order to investigate the efficiency and supremacy of the suggested scheme regarding the fractional calculus, special functions and n-polynomial $\mathcal{P}$ P -convexity, we present two applications for the modified Bessel function and $\mathfrak{q}$ q -digamma function. Finally, these outcomes can evaluate the possible symmetric roles of the criterion that express the real phenomena of the problem.


2021 ◽  
Vol 58 (2) ◽  
pp. 314-334
Author(s):  
Man-Wai Ho ◽  
Lancelot F. James ◽  
John W. Lau

AbstractPitman (2003), and subsequently Gnedin and Pitman (2006), showed that a large class of random partitions of the integers derived from a stable subordinator of index $\alpha\in(0,1)$ have infinite Gibbs (product) structure as a characterizing feature. The most notable case are random partitions derived from the two-parameter Poisson–Dirichlet distribution, $\textrm{PD}(\alpha,\theta)$, whose corresponding $\alpha$-diversity/local time have generalized Mittag–Leffler distributions, denoted by $\textrm{ML}(\alpha,\theta)$. Our aim in this work is to provide indications on the utility of the wider class of Gibbs partitions as it relates to a study of Riemann–Liouville fractional integrals and size-biased sampling, and in decompositions of special functions, and its potential use in the understanding of various constructions of more exotic processes. We provide characterizations of general laws associated with nested families of $\textrm{PD}(\alpha,\theta)$ mass partitions that are constructed from fragmentation operations described in Dong et al. (2014). These operations are known to be related in distribution to various constructions of discrete random trees/graphs in [n], and their scaling limits. A centerpiece of our work is results related to Mittag–Leffler functions, which play a key role in fractional calculus and are otherwise Laplace transforms of the $\textrm{ML}(\alpha,\theta)$ variables. Notably, this leads to an interpretation within the context of $\textrm{PD}(\alpha,\theta)$ laws conditioned on Poisson point process counts over intervals of scaled lengths of the $\alpha$-diversity.


Sign in / Sign up

Export Citation Format

Share Document