scholarly journals The association of maize characteristics with resistance to Fusarium verticillioides and fumonisin accumulation in commercial maize cultivars

2020 ◽  
Vol 13 (3) ◽  
pp. 367-379
Author(s):  
S. Links ◽  
K. van Zyl ◽  
A. Cassiem ◽  
B.C. Flett ◽  
A. Viljoen ◽  
...  

Fusarium verticillioides is the primary fungus that causes Fusarium ear rot (FER) of maize. Infection results in reduced grain yield and quality due to moulding and the contamination of grain with toxic compounds namely fumonisins. Resistance to fungal infection and fumonisin accumulation in maize and maize grain is governed at different levels. In this study, the structural, physico-chemical and genetic basis of resistance to F. verticillioides was investigated in two, replicated field trials at Potchefstroom and Vaalharts in South Africa. Phenotypic data (silk length, husk coverage, pericarp thickness hundred-kernel mass and kernel hardness), physico-chemical data (kernel pH, moisture content, total nitrogen and carbon as well as phenolic acid content) and the expression of pathogenesis-related-5 gene (PR5) and peroxidase gene expression was evaluated in 15 commercial cultivars under artificially inoculated and natural infection conditions. The data were correlated to FER severity, fumonisin accumulation and fungal DNA (referred to as infection indicators). Disease development and fumonisin contamination in Vaalharts was significantly more than in Potchefstroom. There were no significant correlations (r=≥0.60) between phenotypic characteristics and infection indicators. Kernel pH was the most important trait associated with disease development and was negatively correlated (between r=-0.58 and r=-0.75) to all infection indicators. PR5 gene expression had significant positive correlations (r=0.69 and r=0.72) with the fungal and fumonisin levels, respectively. This study presents of the first data demonstrating the use of gene expression in identifying FER/fumonisin-resistant plant material and could aid breeders and growers in selecting resistant material more effectively.

Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 279-286 ◽  
Author(s):  
C. G. Afolabi ◽  
P. S. Ojiambo ◽  
E. J. A. Ekpo ◽  
A. Menkir ◽  
R. Bandyopadhyay

Fusarium ear rot and fumonisin contamination is a major problem facing maize growers worldwide, and host resistance is the most effective strategy to control the disease, but resistant genotypes have not been identified. In 2003, a total of 103 maize inbred lines were evaluated for Fusarium ear rot caused by Fusarium verticillioides in field trials in Ikenne and Ibadan, Nigeria. Disease was initiated from natural infection in the Ikenne trial and from artificial inoculation in the Ibadan trial. Ear rot severity ranged from 1.0 to 6.0 in both locations in 2003. Fifty-two inbred lines with disease severity ≤3 (i.e., ≤ 10% visible symptoms on ears) were selected and reevaluated in 2004 for ear rot resistance, incidence of discolored kernels, and fumonisin contamination in grain. At both locations, ear rot severity on the selected lines was significantly (P < 0.0020) higher in 2004 than in 2003. The effects of selected inbred lines on disease severity were highly significant at Ikenne (P = 0.0072) and Ibadan (P < 0.0001) in 2004. Inbred lines did not affect incidence of discolored kernels at both locations and across years except at Ikenne (P = 0.0002) in 2004. Similarly, significant effects of inbred lines on fumonisin concentration were observed only at Ikenne (P = 0.0201) in 2004. However, inbred lines 02C14585, 02C14593, 02C14603, 02C14606, 02C14624, and 02C14683 had consistently low disease severity across years and locations. Fumonisin concentration was significantly correlated with ear rot only at Ikenne (R = 0.42, P < 0.0001). Correlation between fumonisin concentration and incidence of discolored kernels was also significant at Ikenne (R = 0.39, P < 0.0001) and Ibadan (R = 0.35, P = 0.0007). At both locations, no significant inbred × year interaction was observed for fumonisin concentration. Five inbred lines, namely 02C14585, 02C14603, 02C14606, 02C14624, and 02C14683, consistently had the lowest fumonisin concentration in both trials. Two of these inbred lines, 02C14624 and 02C14585, had fumonisin levels <5.0 μg/g across years in trials where disease was initiated from both natural infection and artificial inoculation. These lines that had consistently low disease severity are useful for breeding programs to develop fumonisin resistant lines.


2011 ◽  
Vol 4 (1) ◽  
pp. 43-51 ◽  
Author(s):  
A. Lanubile ◽  
L. Pasini ◽  
M. Lo Pinto ◽  
P. Battilani ◽  
A. Prandini ◽  
...  

The fungus Fusarium verticillioides is commonly associated with maize production in temperate regions of the world, producing ear rot and grain contamination by fumonisins. Genetic resistance is the best preventive action against fumonisin contamination, although at present no commercial maize hybrids are completely resistant. Several studies of the relationship between Fusarium and other species producing ear rot suggest that these fungal species interact in similar ways with the host plant. Consequently, host plant resistance to one pathogen could be associated with resistance to another. The aim of this study was to introduce sources of resistance to Fusarium spp. into maize inbred lines and to evaluate ear rot severity and fumonisin B1 contamination in advanced breeding lines and hybrids after artificial and natural infection with F. verticillioides. Two inbred lines (CO430 and MP420) with resistance to kernel infection by Fusarium graminearum and Aspergillus flavus, respectively, were crossed and backcrossed to susceptible inbred 1203. The BC1S1 progenies were evaluated for plant morphology and silk date and the selected S1 plants were self-pollinated. The S2 families were evaluated under artificial and natural infection with F. verticillioides. Selected S2 progenies were grown ear-to-row until S5-derived inbreds were developed. The S5 lines were evaluated under artificial and natural infection and used as males to produce single crosses. In both crosses, the mean ear rot of the S5 lines with the lowest ear rot was not significantly different from the resistant parent means. Significant progress was observed in the hybrids regarding ear rot performance: on average, ear rot severity decreased significantly from 23% in check hybrids to 5.3% in CO430-derived hybrids. Our results suggest that inbred lines bred for resistance to A. flavus and F. graminearum ear rot could be used to select advanced breeding lines with increased resistances to F. verticillioides ear rot.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 772-780 ◽  
Author(s):  
C. G. Afolabi ◽  
P. S. Ojiambo ◽  
E. J. A. Ekpo ◽  
A. Menkir ◽  
R. Bandyopadhyay

Fusarium stalk rot is one of the most widespread and destructive diseases of maize, and deployment of resistant genotypes is one of the most effective strategies for controlling the disease. Fifty inbred lines and four checks from the breeding program of the International Institute of Tropical Agriculture were evaluated in field trials at Ikenne and Ibadan, Nigeria in 2003 and 2004 to identify new sources of resistance to stalk rot caused by Fusarium verticillioides. Evaluations were conducted under artificial inoculation and natural infection at Ibadan and Ikenne, respectively. Disease severity was recorded using a severity scale (SS) and direct estimation of stalk discoloration (SD). The two methods of disease assessment were compared and combined to classify genotypes into resistance groups using results from rank-sum analysis. In 2003, disease severity ranged from SS = 1 to 5 and SD = 1.3 to 33.8% at both locations. Both SS and SD were significantly (P < 0.01) higher in 2003 than in 2004 at the two locations. In both years, inbred lines significantly differed in SS (P < 0.02) and SD (P < 0.04) at Ibadan. Similarly, inbred lines significantly differed in SS (P < 0.04) and SD (P < 0.04) when genotypes were evaluated at Ikenne. Disease assessments based on SS and SD were significantly correlated (0.68 < r < 0.95, P < 0.01) in both years. Based on the results from rank-sum analysis, inbred lines were separated into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible groups. At Ibadan, 6 (11.1%) and 8 (14.8%) were identified as highly resistant and resistant, respectively, whereas 11 (20.4%) were identified as resistant at Ikenne. Inbred lines 02C14609, 02C14643, 02C14654, and 02C14678 were consistently classified as either highly resistant or resistant to stalk rot across locations and years while the check genotypes were classified either as susceptible or moderately susceptible to stalk rot. These four inbred lines identified to have high levels of disease resistance may be used for breeding maize with resistance to Fusarium stalk rot.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 881-888 ◽  
Author(s):  
I. M. Small ◽  
B. C. Flett ◽  
W. F. O. Marasas ◽  
A. McLeod ◽  
M. A. Stander ◽  
...  

Fusarium ear rot of maize, caused by Fusarium verticillioides, is an important disease affecting maize production worldwide. Apart from reducing yield and grain quality, F. verticillioides produces fumonisins which have been associated with mycotoxicoses of animals and humans. Currently, no maize breeding lines are known with resistance to F. verticillioides in South Africa. The objective of this study, therefore, was to evaluate 24 genetically diverse maize inbred lines as potential sources of resistance to Fusarium ear rot and fumonisin accumulation in field trials at Potchefstroom and Vaalharts in South Africa. After artificial silk channel inoculation with F. verticillioides, Fusarium ear rot development was determined at harvest and fumonisins B1, B2, and B3 quantified. A significant inbred line by location effect was observed for Fusarium ear rot severity (P ≤ 0.001), although certain lines proved to be consistently resistant across both locations. The individual inbred lines also differed considerably in fumonisin accumulation between Potchefstroom and Vaalharts, with differentiation between susceptible and potentially resistant inbred lines only being possible at Vaalharts. A greenhouse inoculation trial was then also performed on a subset of potentially resistant and highly susceptible lines. The inbred lines CML 390, CML 444, CML 182, VO 617Y-2, and RO 549 W consistently showed a low Fusarium ear rot (<5%) incidence at both Potchefstroom and Vaalharts and in the greenhouse. Two of these inbred lines, CML 390 and CML 444, accumulated fumonisin levels <5 mg kg–1. These lines could potentially act as sources of resistance for use within a maize breeding program.


Author(s):  
Anna Langstroff ◽  
Marc C. Heuermann ◽  
Andreas Stahl ◽  
Astrid Junker

AbstractRising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


2021 ◽  
Vol 22 (5) ◽  
pp. 2435
Author(s):  
Marzia Beccaccioli ◽  
Manuel Salustri ◽  
Valeria Scala ◽  
Matteo Ludovici ◽  
Andrea Cacciotti ◽  
...  

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


2018 ◽  
Vol 16 (5) ◽  
pp. 424-436 ◽  
Author(s):  
Carol Moreau ◽  
Maggie Knox ◽  
Lynda Turner ◽  
Tracey Rayner ◽  
Jane Thomas ◽  
...  

AbstractIn order to gain an understanding of the genetic basis of traits of interest to breeders, the pea varieties Brutus, Enigma and Kahuna were selected, based on measures of their phenotypic and genotypic differences, for the construction of recombinant inbred populations. Reciprocal crosses were carried out for each of the three pairs, and over 200 F2 seeds from each cross advanced to F13. Bulked F7 seeds were used to generate F8–F11 bulks, which were grown in triplicated plots within randomized field trials and used to collect phenotypic data, including seed weight and yield traits, over a number of growing seasons. Genetic maps were constructed from the F6 generation to support the analysis of qualitative and quantitative traits and have led to the identification of four major genetic loci involved in seed weight determination and at least one major locus responsible for variation in yield. Three of the seed weight loci, at least one of which has not been described previously, were associated with the marrowfat seed phenotype. For some of the loci identified, candidate genes have been identified. The F13 single seed descent lines are available as a germplasm resource for the legume and pulse crop communities.


Sign in / Sign up

Export Citation Format

Share Document