Developments in mycotoxin analysis: an update for 2019-2020

2021 ◽  
Vol 14 (1) ◽  
pp. 3-26 ◽  
Author(s):  
S.A. Tittlemier ◽  
J. Brunkhorst ◽  
B. Cramer ◽  
M.C. DeRosa ◽  
V.M.T. Lattanzio ◽  
...  

This review summarises developments on the analysis of various matrices for mycotoxins published in the period from mid-2019 to mid-2020. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. Aside from sampling and quality control, discussion of this past year’s developments is organised by detection and quantitation technology and covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays that use alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 954 ◽  
Author(s):  
Daria Bożejewicz ◽  
Katarzyna Witt ◽  
Małgorzata A. Kaczorowska ◽  
Borys Ośmiałowski

A new compound 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) was used as an extractant for copper(II) ion recovery in a solvent extraction conducted at a temperature of 25 °C. The best results (99% recovery of copper(II) ions) were obtained when the aqueous phase contained 0.001 mol/dm3 Cu(II) and 0.2 mol/dm3 NH3 (pH~5.8), while the organic phase was a 0.001 mol/dm3 chloroform solution of 2,6-bis(4-methoxybenzoyl)-diaminopyridine. Spectrophotometry studies were used to determine the dissociation constant of the tested compound and determine the stability constant of the complex of subjected compound with copper(II) ions. The high-resolution mass spectrometry (HRMS) and higher energy collisional dissociation tandem mass spectrometry (HCD MS/MS) methods have been applied for the confirmation of the structure of 2,6-bis(4-methoxybenzoyl)-diaminopyridine and to determine its complexation with Cu(II) in solution.


The Analyst ◽  
2020 ◽  
Vol 145 (5) ◽  
pp. 1737-1748
Author(s):  
Alessandro Quaranta ◽  
Maya Spasova ◽  
Elena Passarini ◽  
Isabella Karlsson ◽  
Lorena Ndreu ◽  
...  

Glycosylation characterization could lead to the discovery of biomarkers and is crucial in quality control of biopharmaceuticals. Here we present a method to quantify glycoforms on intact proteins, with parallel glycan identification by IMS-MS/MS.


2019 ◽  
Vol 20 (21) ◽  
pp. 5473 ◽  
Author(s):  
Feifei Sun ◽  
Haiguang Tan ◽  
Yanshen Li ◽  
Marthe De Boevre ◽  
Sarah De Saeger ◽  
...  

Zearalenone-14-glucoside (ZEN-14G), a key modified mycotoxin, has attracted a great deal of attention due to the possible conversion to its free form of zearalenone (ZEN) exerting toxicity. In this study, the toxicokinetics of ZEN-14G were investigated in rats after oral and intravenous administration. The plasma concentrations of ZEN-14G and its major five metabolites were quantified using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The data were analyzed via non-compartmental analysis using software WinNonlin 6.3. The results indicated that ZEN-14G was rapidly hydrolyzed into ZEN in vivo. In addition, the major parameters of ZEN-14G following intravenous administration were: area under the plasma concentration–time curve (AUC), 1.80 h·ng/mL; the apparent volume of distribution (VZ), 7.25 L/kg; and total body clearance (CL), 5.02 mL/h/kg, respectively. After oral administration, the typical parameters were: AUC, 0.16 h·ng/mL; VZ, 6.24 mL/kg; and CL, 4.50 mL/h/kg, respectively. The absolute oral bioavailability of ZEN-14G in rats was about 9%, since low levels of ZEN-14G were detected in plasma, which might be attributed to its extensive metabolism. Therefore, liquid chromatography high-resolution mass spectrometry (LC-HRMS) was adopted to clarify the metabolic profile of ZEN-14G in rats’ plasma. As a result, eight metabolites were identified in which ZEN-14-glucuronic acid (ZEN-14GlcA) had a large yield from the first time-point and continued accumulating after oral administration, indicating that ZEN-14-glucuronic acid could serve a potential biomarker of ZEN-14G. The obtained outcomes would prompt the accurate safety evaluation of ZEN-14G.


Sign in / Sign up

Export Citation Format

Share Document