scholarly journals Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats

2013 ◽  
Vol 6 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Samy Ali Hussei ◽  
Mohammed El-Said Az ◽  
Soheir Kamal El-S
2014 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Khalid Mohammed Naji ◽  
Maher Ali Al-Maqtari ◽  
Adnan Ali Al-Asbahi ◽  
Qais Yusuf M. Abdullah ◽  
R. Nagesh Babu ◽  
...  

2019 ◽  
Vol 22 (1) ◽  
pp. 59-64
Author(s):  
Samaneh Vaziri Amjad ◽  
Poorandokht Davoodi ◽  
Mohammad Taghi Goodarzi ◽  
Hamidreza Abdolsamadi ◽  
Jalal Poorolajal ◽  
...  

Background:HIV infections are a worldwide health problem. HIV infection reduces CD4+ cell counts. Oxidative stress might play an important role in the stimulation of virus replication and immunodeficiency. Saliva might be the first line of defense against oxidative stress.Objective:The aim of this study was to evaluate the oxidative stress marker and antioxidant levels of saliva in HIV-infected patients by measuring total antioxidant capacity and malondialdehyde level.Methods:A total of 49 HIV-positive patients and 49 healthy HIV-negative individuals were randomly selected. All the patients were clinically examined. Five mL of unstimulated whole saliva was collected and evaluated by spectrophotometric assay. Data were analyzed with STATA 11.Results:Mean ages of the case and control groups were 28 and 33 years, respectively. Salivary malondialdehyde levels were significantly higher in the HIV-positive group (3.68±2.26) compared to the healthy control group (2.79±1.91). Levels of salivary total antioxidant capacity were significantly lower in the HIV-positive group (0.20± 0.09) compared to the control group (0.27±0.10).Conclusion:The antioxidant defense system in HIV-positive individuals was low and oxidative stress was high in this population. Saliva might be used as a diagnostic tool for antioxidant changes in HIV-positive patients in the future. There were changes in salivary antioxidant defense system and oxidative stress in HIV-positive individuals. Antioxidant supplements might help local salivary and general health statuses.


2021 ◽  
Author(s):  
Wen Nie ◽  
Ye-ye Du ◽  
Fei-ran Xu ◽  
Kai Zhou ◽  
Zhao-ming Wang ◽  
...  

Lys-Arg-Gln-Lys-Tyr-Asp bioactive peptide in JHP prevent ALD by regulating gut microbiota, upregulating the expression of the NRF2/HO-1 antioxidant defense system and reducing oxidative stress injury in liver cells.


2012 ◽  
Vol 14 (2) ◽  
pp. 33-37 ◽  
Author(s):  
Farzaneh Montazerifar ◽  
Mansour Karajibani ◽  
Houshang Sanadgol ◽  
Mohammad Hashemi

2008 ◽  
pp. 403-411 ◽  
Author(s):  
BI Ognjanović ◽  
SD Marković ◽  
SZ Pavlović ◽  
RV Žikić ◽  
AŠ Štajn ◽  
...  

The effects of selenium (Se) on antioxidant defense system in liver and kidneys of rats with cadmium (Cd)-induced toxicity were examined. Cd exposure (15 mg Cd/kg b.m./day as CdCl2 for 4 weeks) resulted in increased lipid peroxidation (LP) in both organs (p<0.005 and p<0.01). Vitamin C (Vit C) was decreased in the liver (p<0.005), whereas vitamin E (Vit E) was increased in the liver and kidneys (p<0.005 and p<0.05) of Cd-exposed animals. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were decreased in both tissues (p<0.05 and p<0.005), whereas catalase (CAT) activity was decreased only in liver (p<0.005). Glutathione S-transferase (GST) increased in both tissues (p<0.005 and p<0.01). Treatment with Se (0.5 mg Se/kg b.m./day as Na2SeO3 for 4 weeks) significantly increased liver and kidneys SOD and GSH-Px activities (p<0.05 to p<0.005), as well as CAT and GST activities only in the liver (p<0.01). In animals exposed to Se, both the concentrations of Vit C (p<0.01) and Vit E (p<0.005) were increased in both tissues. Co-treatment with Se resulted in reversal of oxidative stress with significant decline in analyzed tissues Cd burden. Our results show that Se may ameliorate Cd-induced oxidative stress by decreasing LP and altering antioxidant defense system in rat liver and kidneys and that Se demonstrates the protective effect from cadmium-induced oxidative damage.


RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 36149-36162 ◽  
Author(s):  
Yutang Wang ◽  
Zhijun Diao ◽  
Jing Li ◽  
Bo Ren ◽  
Di Zhu ◽  
...  

Illustration of effects of chicoric acid on neuroprotection againstd-gal-induced memory impairmentviainflammation and oxidative stress.


2016 ◽  
Vol 68 (4) ◽  
pp. 877-881 ◽  
Author(s):  
Hong-Bo Li ◽  
Lin Wang ◽  
Zheng-Tao Gu ◽  
Xuan He ◽  
Lei Su

Despite high morbidity and mortality, no effective options are available for the treatment of acute lung injury (ALI). Therefore, the present study investigated the protective effect of honokiol (HK) on ALI via determination of its effect on several key biomarkers. The results of the study showed that HK significantly inhibited the infiltration of neutrophils and protein leakage induced by lipopolysaccharide (LPS) (p<0.05). The pretreatment with HK considerably boosted the endogenous antioxidant defense system to counteract the oxidative stress in LPS-induced ALI by elevating the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Moreover, the activity of toxic mediators, such as myeloperoxidase (MPO), and lipid peroxidation were significantly inhibited upon treatment with HK. In order to examine the mechanism of action of HK, its effect was quantified using matrix metalloproteinase-9 (MMP-9) activity in bronchoalveolar lavage fluid (BALF) by gelatin zymography. Pretreatment with HK considerably suppressed the activation of MMP-9 in a concentration-dependent manner. These findings suggest that HK protects from lung injury via inhibition of MMP-9, and by enhancing the activity of the endogenous antioxidant defense system.


2013 ◽  
Vol 304 (5) ◽  
pp. E495-E506 ◽  
Author(s):  
S. Keipert ◽  
M. Ost ◽  
A. Chadt ◽  
A. Voigt ◽  
V. Ayala ◽  
...  

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


Sign in / Sign up

Export Citation Format

Share Document