Development of Resynthesized Rapeseed (Brassica napus L.) Forms with Low Erucic Acid Content Through in ovulum Culture

2004 ◽  
Vol 4 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Fatih Seyis ◽  
Wolfgang Friedt . ◽  
Wilfried Luhs
2014 ◽  
Vol 2 (12) ◽  
pp. 918-924 ◽  
Author(s):  
Jin Yue ◽  
Pingping Shang ◽  
Gang Wang ◽  
Dan Liu ◽  
Ling Xu ◽  
...  

2008 ◽  
Vol 23 (1) ◽  
pp. 125-138 ◽  
Author(s):  
Ujjal K. Nath ◽  
Gayatri Goswami ◽  
Rosemarie Clemens ◽  
Heiko C. Becker ◽  
Christian Möllers

1964 ◽  
Vol 44 (1) ◽  
pp. 104-111 ◽  
Author(s):  
B. L. Harvey ◽  
R. K. Downey

Genetic analysis of F2, F3, and backcross populations supported the hypothesis that erucic acid content in seed oil of plants of Brassica napus L. is governed by two genes displaying no dominance and acting in an additive manner. Environment appeared to influence erucic acid content, especially in genotypes capable of producing a large amount of this acid. Methods for the breeding of plants of Brassica campestris L. with zero erucic acid are outlined and it is suggested that similar methods could be used to breed for or against other fatty acids.


1964 ◽  
Vol 44 (4) ◽  
pp. 359-364 ◽  
Author(s):  
B. R. Stefansson ◽  
F. W. Hougen

Erucic acid is the major and characteristic component of common rapeseed oils. Seed oils from a total of 125 strains from three species of Brassica (B. napus L., B. campestris L., and B. juncea (L.) Coss.) grown near Winnipeg in 1959 were analysed for erucic acid content. The range of variability for this component was similar to the range of previously reported values. Analyses of seed oils from individual plants revealed a greater range of variability and repeated selection resulted in isolation of rape strains (Brassica napus L.) from two different sources with seed oils containing only traces of erucic acid. Oleic has replaced erucic acid as the major constituent of these oils. Analysis of F2 data indicated that inheritance of erucic acid content is conditioned by two independent gene loci and that the dosage effect of the genes is additive. Pollen source exerts a direct effect on the composition of the oil (xenia effect).


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1297
Author(s):  
Chitralekha Shyam ◽  
Manoj Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Ravindra Solanki ◽  
...  

Brassica junceais a crucial cultivated mustard species and principal oilseed crop of India and Madhya Pradesh, grown for diverse vegetables, condiments, and oilseeds. Somaclonal variation was explored as a probable source of additional variability for the manipulation of fatty acids, especially low erucic acid contents that may be valuable for this commercially important plant species. The plantlets regenerated from tissue cultures (R0), their R1 generation and respective parental lines were compared for morpho-physiological traits and fatty acid profile for the probable existence of somaclonal variations. The first putative somaclone derived from genotype CS54 contained 5.48% and 5.52% erucic acid in R0 and R1 regenerants, respectively, compared to the mother plant (41.36%). In comparison, the second somaclone acquired from PM30 exhibited a complete absence of erucic acid corresponding to its mother plant (1.07%). These putative somaclones present a source of variation for exploitation in the development of future mustard crops with low erucic acid content.


1974 ◽  
Vol 17 (3) ◽  
pp. 136-147 ◽  
Author(s):  
H. Vogtmann ◽  
D.R. Clandinin ◽  
R.T. Hardin

Sign in / Sign up

Export Citation Format

Share Document