scholarly journals Fatty acid composition of resynthesized Brassica napus L., B. campestris L. and B. alboglabra Bailey with special reference to the inheritance of erucic acid content

Heredity ◽  
1989 ◽  
Vol 63 (3) ◽  
pp. 309-314 ◽  
Author(s):  
B Y Chen ◽  
W K Heneen
2000 ◽  
Vol 28 (6) ◽  
pp. 581-582 ◽  
Author(s):  
N. Kaushik ◽  
A. Agnihotri

Rapeseed-mustard is one of the most economically important oilseed crops in India. Speciality oils having high amounts of a specific fatty acid are of immense importance for both nutritional and industrial purposes. Oil high in oleic acid has demand in commercial food-service applications due to a long shelf-life and cholesterol-reducing properties. Both linoleic and linolenic acids are essential fatty acids; however, less than 3% linolenic acid is preferred for oil stability. High erucic acid content is beneficial for the polymer industry, whereas low erucic acid is recommended for food purposes. Therefore, it is important to undertake systematic characterization of the available gene pool for its variable fatty acid profile to be utilized for specific purposes. In the present study the Indian rapeseed-mustard germplasm and some newly developed low-erucic-acid strains were analysed by GLC to study the fatty acid composition in these lines. The GLC analysis revealed that the rapeseed-mustard varieties being commonly grown in India are characterized by high erucic acid content (30–51%) in the oil with low levels of oleic acid (13–23%). However, from among the recently developed low-erucic-acid strains, several lines were identified with comparatively high oleic acid (60–70%), moderate to high linoleic acid (13–40%) and low linolenic acid (< 10%) contents. Work is in progress at TERI (New Delhi, India) to utilize these lines for development of strains with particular fatty acid compositions for specific purposes.


1970 ◽  
Vol 50 (3) ◽  
pp. 233-247 ◽  
Author(s):  
D. B. FOWLER ◽  
R. K. DOWNEY

Self-pollinated seed from normal and erucic acid free plants of summer rapeseed (Brassica napus L.) was harvested at weekly intervals from pollination to maturity. Oven-dried whole seeds and their component parts were weighed and analyzed for oil content and fatty acid composition. Oil and dry matter accumulation followed sigmoidal patterns, most of the deposition occurring between 14 and 35 days after pollination (DAP). The relative contribution of the testa, endosperm and embryo to dry weight and oil content of whole seeds changed significantly during seed development. Oil content of the developing embryo varied from 22 to 44%, and the testa from 1.6 to 13%, although at maturity only 6 to 8% oil was found in the testa and adhering aleurone. The nucleate endosperm oil content was estimated to be low and in the order of 2 to 2.5%. In 7- to 14-day-old seeds the dry weight, oil content and fatty acid composition were largely determined by the testa and endosperm. From 14 to 21 DAP the testa and embryo were dominant and after 21 DAP the embryo was the controlling influence on the seed characteristics studied.Oils of the testa, nucleate endosperm and embryo differed in fatty acid composition. In seeds free of erucic acid, the ratios of the 18 carbon fatty acids of the embryo and testa remained nearly constant from 21 DAP to maturity. This suggested that the variation in fatty acid composition as well as oil content during seed development in this material was due to disproportionate changes in the contribution of the testa, nucleate endosperm and embryo. However, in developing seeds capable of producing erucic acid a change in the ratio of fatty acid synthesis occurred in both the testa and embryo.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Feng Chen ◽  
Wei Zhang ◽  
Kunjiang Yu ◽  
Lijie Sun ◽  
Jianqin Gao ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 222 ◽  
Author(s):  
Qinfu Sun ◽  
Jueyi Xue ◽  
Li Lin ◽  
Dongxiao Liu ◽  
Jian Wu ◽  
...  

Rapeseed (Brassica napus L.) with substantial lipid and oleic acid content is of great interest to rapeseed breeders. Overexpression of Glycine max transcription factors Dof4 and Dof11 increased lipid accumulation in Arabidopsis and microalgae, in addition to modifying the quantity of certain fatty acid components. Here, we report the involvement of GmDof4 and GmDof11 in regulating fatty acid composition in rapeseeds. Overexpression of GmDof4 and GmDof11 in rapeseed increased oleic acid content and reduced linoleic acid and linolenic acid. Both qPCR and the yeast one-hybrid assay indicated that GmDof4 activated the expression of FAB2 by directly binding to the cis-DNA element on its promoters, while GmDof11 directly inhibited the expression of FAD2. Thus, GmDof4 and GmDof11 might modify the oleic acid content in rapeseed by directly regulating the genes that are associated with fatty acid biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document