scholarly journals Effect of Cropping Systems on Accumulation of Fusarium Head Blight of Wheat Inocula in Crop Residues and Soils

2015 ◽  
Vol 11 (1-3) ◽  
pp. 12-21 ◽  
Author(s):  
N.K. Njeru ◽  
J.W. Muthomi ◽  
C.K. Mutegi ◽  
J.M. Wagacha
2021 ◽  
Vol 192 ◽  
pp. 103198
Author(s):  
Dimitrios Drakopoulos ◽  
Andreas Kägi ◽  
Johan Six ◽  
Alexander Zorn ◽  
Felix E. Wettstein ◽  
...  

Author(s):  
Tomasz Góral ◽  
Aleksander Łukanowski ◽  
Elzbieta Maluszynska ◽  
Kinga Stuper-Szablewska ◽  
Maciej Buśko ◽  
...  

Growing acreage and changing consumer preferences cause increasing interest in the cereal products originating from organic farming. Lack of results of objective test, however, does not allow drawing conclusions about the effects of cultivation in the organic system and comparison to currently preferred conventional system. Field experiment was conducted in organic and conventional fields. Thirty modern cultivars of winter wheat were sown. They were characterized for disease infection including Fusarium head blight, seed sowing value, the amount of DNA of the six species of Fusarium fungi as well as concentration of ergosterol and trichothecenes in grain. The intensity Fusarium head blight was at a similar level in both systems. However, Fusarium colonization of kernels expressed as ergosterol level or DNA concentration was higher for the organic system. It did not reflect in an increased accumulation of trichothecenes in grain, which was similar in both systems, but sowing value of organically produced seeds was lower. Significant differences between analyzed cropping systems and experimental variants were found. The selection of the individual cultivars for organic growing in terms of resistance to diseases and contamination of grain with Fusarium toxins was possible. Effects of organic growing differ significantly from the conventional and grain obtained such way can be recommended to consumers. There are indications for use of particular cultivars bred for conventional agriculture in the case of organic farming, and the growing organic decreases plant stress resulting from intense fertilization and chemical plant protection.


2021 ◽  
Author(s):  
Maira R. Duffeck ◽  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Alyssa Collins ◽  
Philip J. Jensen ◽  
...  

Fusarium graminearum is the main causal species of Fusarium head blight (FHB) globally. Recent changes in the trichothecene (toxin) types in the North American FHB pathogens support the need for continued surveillance. In this study, 461 isolates were obtained from symptomatic spikes of wheat, spelt, barley, and rye crops during 2018 and 2019. These were all identified to species and toxin types using molecular-based approaches. An additional set of 77 F. graminearum isolates obtained from overwintering crop residues during Winter 2012 were molecularly identified to toxin types. A subset of 31 F. graminearum isolates (15 15ADON and 16 3ADON) were assessed for mycelial growth, macroconidia, perithecia, and ascospore production, and sensitivity to two triazole fungicides. Ninety percent of isolates obtained from symptomatic spikes (n = 418) belonged to F. graminearum, with another four species found at a lower frequency (n = 39). F. graminearum isolates from symptomatic spikes were mainly of the 15ADON (95%), followed by 3ADON (4%), NIV (0.7%), and NX-2 (0.3%) toxin types. All F. graminearum isolates obtained from overwintering residue were of the 15ADON type. Toxin types could not be differentiated based on multivariate analysis of growth and reproduction traits. All isolates were sensitive to tebuconazole and metconazole fungicides in vitro. This study confirms the dominance of F. graminearum and suggests ecological and environmental factors that lead to similar composition of toxin types in Northern U.S. Our results are useful to assess the sustainability of FHB management practices and provide a baseline for future FHB surveys.


2019 ◽  
Vol 7 (10) ◽  
pp. 439 ◽  
Author(s):  
Tomasz Góral ◽  
Aleksander Łukanowski ◽  
Elżbieta Małuszyńska ◽  
Kinga Stuper-Szablewska ◽  
Maciej Buśko ◽  
...  

Growing acreage and changing consumer preferences cause increasing interest in the cereal products originating from organic farming. Lack of results of objective test, however, does not allow drawing conclusions about the effects of cultivation in the organic system and comparison to currently preferred conventional system. Field experiment was conducted in organic and conventional fields. Thirty modern cultivars of winter wheat were sown. They were characterized for disease infection including Fusarium head blight, seed sowing value, the amount of DNA of the six species of Fusarium fungi as well as concentration of ergosterol and trichothecenes in grain. The intensity Fusarium head blight was at a similar level in both systems. However, Fusarium colonization of kernels expressed as ergosterol level or DNA concentration was higher for the organic system. It did not reflect in an increased accumulation of trichothecenes in grain, which was similar in both systems, but sowing value of organically produced seeds was lower. Significant differences between analyzed cropping systems and experimental variants were found. The selection of the individual cultivars for organic growing in terms of resistance to diseases and contamination of grain with Fusarium toxins was possible. Effects of organic growing differ significantly from the conventional and grain obtained such way can be recommended to consumers. There are indications for use of particular cultivars bred for conventional agriculture in the case of organic farming, and the growing organic decreases plant stress resulting from intense fertilization and chemical plant protection.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Xu ◽  
Wei Liu ◽  
Yuli Song ◽  
Yilin Zhou ◽  
Xiangming Xu ◽  
...  

In the main wheat production area of China (The Huang Huai Plain, HHP), both Fusarium graminearum and F. asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP region. Based on the phylogenetic analysis of EF-1α and Tri101sequences, 1207 of the 1844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1022 of the 1078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonging to F. asiaticum. Analysis based on generalised linear modelling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. Fusarium graminearum was associated with drier conditions, cooler conditions during the winter but warmer conditions in the infection and grain-colonization period, and with the maize-wheat rotation. The opposite was true for F. asiaticum. Except 15-ADON, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-ADON was more prevalent in the maize-wheat rotation; whereas NIV more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than that in the infection and grain-colonization and pre-anthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 800-807 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky

The presence of Fusarium spp. was examined in the residues of wheat, barley, corn, sunflower, pasture, and gramineous weed species common in wheat and barley cropping systems collected from no-tillage and reduced-tillage plots from February 2001 to March 2003 in Uruguay. Gibberella zeae was recovered from residues of wheat, barley, corn, sunflower, fescue, and the gramineous weeds Digitaria sanguinalis, Setaria spp., Lolium multiflorum, and Cynodon dactylon, except from birdsfoot trefoil or white clover. Of the Fusarium spp. obtained, G. zeae was the most frequently recovered from wheat and barley residues, while other species were more common in other crops. G. zeae declined over time in all residues examined. Wheat and barley residues produced more ascospores of G. zeae than corn or other gramineous residues. Sunflower residue did not support ascospore production, indicating that it probably did not contribute to primary inoculum. Wheat and barley residues supported G. zeae colonization longer in no-till than in reduced-tillage production systems and, thus, may represent major contributors to Fusarium head blight (FHB) inoculum in Uruguay. The presence of G. zeae in the gramineous components of pastures, weed species, and sunflower should be considered when implementing control strategies for FHB.


Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 71-76 ◽  
Author(s):  
R. Dill-Macky ◽  
R. K. Jones

Effects of previous crop residues and tillage practices on Fusarium head blight (FHB) of wheat were examined. Fusarium head blight was monitored in plots of the FHB-susceptible spring wheat cultivar Norm following crops of corn, wheat, and soybeans in 1995, 1996, and 1997. Moldboard plow, chisel plow, and no-till treatments were imposed perpendicular to crop strips to establish a range of residue levels in each of the previous crop residues. Fusarium head blight incidence and severity were greatest when wheat followed corn and least when wheat followed soybeans. Incidence and severity were lower in moldboard plowed plots than in either chisel plowed or no-till plots, although differences among chisel plow and no-till treatments were not apparent. Yields of wheat were approximately 15% lower in plots where wheat followed corn or wheat than in wheat following soybeans and were 10% greater in moldboard plowed plots than in either chisel plowed or no-till treatments. The deoxynivalenol (DON) content of harvested grain was significantly correlated with FHB incidence and severity. The DON level in wheat following soybeans, averaged across tillage treatments, was 25% lower than in wheat following wheat and 50% of the level in wheat following corn. These findings suggest that changes in regional tillage practices, principally the move toward conservation tillage and reduced-till systems, contributed to the recent FHB epidemics in the Upper Midwest. Because differences in the type and quantity of crop residues in small plots affected disease development, it is likely that local sources of inoculum, such as those within a grower's field, contribute directly to the inoculum load and disease potential. The implication of these findings is that selection of cultural practices aimed to reduce inoculum-borne residues will assist in the control of FHB.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 987
Author(s):  
Hans-Rudolf Forrer ◽  
Annegret Pflugfelder ◽  
Tomke Musa ◽  
Susanne Vogelgsang

Fusarium head blight (FHB) is a devastating disease of wheat. Worldwide, Fusarium graminearum is the most dominant FHB-causing species. Its most common toxin, deoxynivalenol (DON), impairs food and feed safety and has an enormous economic impact. Agronomic factors such as crop rotation, soil management and host genotype strongly influence the occurrence of F. graminearum. Infected plant debris from previous crops, on which perithecia and ascospores develop, represent the main source for FHB, and hence, improved cropping systems aim to reduce this inoculum to decrease the infection risk. The best measure to evaluate the disease pressure is spore traps that detect deposited airborne ascospores. Commercial spore traps are expensive and require power sources, thus, they are not suitable for investigations in field experiments with different treatments. In consequence, we developed spore traps containing a Petri dish with Fusarium-selective agar, protected by aluminum dishes and attached on a wooden board. We compared the data of our low-cost trap with those of a commercial high-throughput jet sampler and obtained equivalent results. In field experiments to compare cropping systems, we observed a high correlation between the DON content in wheat grains and the number of colonies from deposited spores. Our spore trap proved to be a highly valuable tool to not only study FHB epidemiology but also to identify innovative cropping systems with a lower risk for FHB and DON contamination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ida Karlsson ◽  
Paula Persson ◽  
Hanna Friberg

The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.


Sign in / Sign up

Export Citation Format

Share Document