Effect of Humic Acid Applications on the Root-Rot Diseases Caused by Fusarium spp. on Tomato Plants

2008 ◽  
Vol 7 (2) ◽  
pp. 179-182 ◽  
Author(s):  
Fahri Yigit ◽  
Murat Dikilitas
2021 ◽  
Vol 2 (44) ◽  
pp. 22-22
Author(s):  
Alexander Saakian ◽  
◽  

The taxonomic composition and incidence of phytopathogenic fungi on the roots of soft spring wheat Triticum aestivum L. of nine varieties of Siberian origin (Altayskaya 70, Altayskaya 75, Krasnoyarskaya 12, Novosibirskaya 15, Novosibirskaya 16, Novosibirskaya 29, Novosibirskaya 31, Novosibirskaya 41 and Svirel) cultivated using wheat and fallow as a predecessor, was studied in the area of Kansk-Krasnoyarsk forest-steppe. Average incidence of fungal root infection was 24%. In plants grown using wheat as a predecessor, the incidence was statistically significantly (p <0.05) higher than in plants grown using fallow as a predecessor (27.3 versus 20.6%). Statistically significant (p <0.05) differences in the prevalence of root infection were revealed between cultivars. The maximal prevalence (33.3 and 32.3%, respectively) on average for the wheat predecessor and fallow was found for the varieties Svirel and Altayskaya 75, the minimal (16.7%) for the varieties Novosibirskaya 16 and Altayskaya 70. The complex of phytopathogenic fungi on the roots is represented by Fusarium spp., Bipolaris sorokiniana and Alternaria spp. (31.4, 44.9 and 23.7% of the pathogenic complex on average for varieties and variants, respectively). The composition of pathogens statistically significantly (p <0.01) depends on the predecessor. In the plants cultivated using wheat as a predecessor, the proportion of Alternaria spp. was higher whereas proportions of Fusarium spp. and Bipolaris sorokiniana were lower. No differences in prevalence and taxonomic composition of root infection between varieties originated from Novosibirsk territory, Krasnoyarsk territory and Altay territory were found. Keywords: SPRING WHEAT, ROOT ROT, KRASNOYARSK TERRITORY, FUSARIUM SPP., BIPOLARIS SOROKINIANA, ALTERNARIA SPP


2019 ◽  
Vol 21 (01) ◽  
pp. 61-66
Author(s):  
M.M. Abdelkader ◽  
M.Y. Puchkov ◽  
M.A. Lysakov ◽  
E.G. Loktionova ◽  
A.A. Suliman

1934 ◽  
Vol 10 (1) ◽  
pp. 115-124 ◽  
Author(s):  
W. C. Broadfoot

The crown and root tissue from 43,305 of 47,360 plants examined in this investigation yielded Helminthosporium sativum, Fusarium culmorum and other Fusarium spp., either alone or in combination with these or other fungi and bacteria. It was the exception for any mature plant, the surface tissue of which was disinfected, to be free from fungi or bacteria. None of the various crop sequences or cultural practices used in this study appeared to significantly affect more than another the relative prevalence of either H. sativum or Fusarium spp., as indicated by isolations from the crown tissue of wheat. However, as there was a marked tendency at certain stations each year for H. sativum or Fusarium spp. to predominate, it was concluded that certain factors of the environment were more effective than the crop sequence in modifying the relative prevalence of the two fungi mentioned in the crown and root tissue of wheat plants.


1980 ◽  
Vol 31 (2) ◽  
pp. 297 ◽  
Author(s):  
AW Kellock ◽  
LL Stubbs ◽  
DG Parbery

Fusarium avenaceurn (Corda ex Fr.) Sacc. was shown for the first time to be carried in the hilum of subterranean clover (Trifolium Subterraneum L.) seed. Scanning electron microscopy and thin-section techniques showed that the fungus occurred only as dormant mycelium in parenchyma cells of funicle scar tissue. It emerged from these tissues after a 12 h incubation at 24�C and in 48 h penetrated internal parts of the seed through the hilum fissure. After 21 days on moist blotting paper, seedlings grown from infected seed developed lesions on their roots similar to those of root-rot of subterranean clover in the field. Fusarium spp. were also detected in the hilum of seeds of white (T. repens L.) and strawberry (T. fragiferum L.) clover and barrel medic (M. truncatula L.). It was demonstrated experimentally that all parts of the burr, incl~tding the funicle, became infected with F. avenaceuni when subterranean clover plants grown from healthy seed in pasteurized soil buried their burrs in soil inoculated with the fungus. Use of optical brighteners failed to trace seed infection because the compounds, although absorbed by the pathogen in culture, were not translocated.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 960-966 ◽  
Author(s):  
Wade H. Elmer ◽  
Joseph J. Pignatello

Pyrolyzed biomass waste, commonly called biochar, has attracted interest as a soil amendment. A commercial prototype biochar produced by fast pyrolysis of hardwood dust was examined in soils to determine if it could reduce the damaging effect of allelopathy on arbuscular mycorrhizal (AM) root colonization and on Fusarium crown and root rot of asparagus. In greenhouse studies, biochar added at 1.5 and 3.0% (wt/wt) to asparagus field soil caused proportional increases in root weights and linear reductions in the percentage of root lesions caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum compared with a control. Concomitant with these effects was a 100% increase in root colonization by AM fungi at the 3.0% rate. Addition of aromatic acids (cinnamic, coumaric, and ferulic) that are known allelopathic agents affecting asparagus reduced AM colonization but the deleterious effects were not observed following the application of biochar at the higher rate. When dried, ground, asparagus root and crown tissues infested with Fusarium spp. were added to soilless potting mix at 0, 1, or 5 g/liter of potting mix and then planted with asparagus, there was a decrease in asparagus root weight and increase in disease at 1 g/liter of potting mix but results were inconsistent at the higher residue rate. However, when biochar was added at 35 g/liter of potting mix (roughly 10%, vol/vol), these adverse effects on root weight and disease were equal to the nontreated controls. A small demonstration was conducted in field microplots. Those plots amended with biochar (3.5% [wt/wt] soil) produced asparagus plants with more AM colonization in the first year of growth but, in the subsequent year, biochar-treated plants were reduced in size, possibly due to greater than average precipitation and the ability of biochar to retain moisture that, in turn, may have created conditions conducive to root rot. These studies provide evidence that biochar may be useful in overcoming the deleterious effects of allelopathic residues in replant soils on asparagus.


1980 ◽  
Vol 58 (24) ◽  
pp. 2549-2556 ◽  
Author(s):  
Walter J. Kaiser ◽  
Glenn M. Horner

In some areas of Iran, root rot of irrigated lentils (Lens culinaris) was a serious problem resulting in high plant mortality and decreased yields. Pythium ultimum was the predominant soil-borne pathogen isolated from discolored, necrotic roots of diseased plants in furrow-irrigated fields at Karaj, and appeared to be the primary incitant of root rot of irrigated lentils at several other locations in the country. Pythium aphanidermatum was the primary pathogen isolated from roots of diseased lentils at two irrigated sites in southern Iran. Isolates of P. ultimum and P. aphanidermatum were highly pathogenic on roots of lentil in greenhouse inoculation studies. Other fungi isolated from diseased lentil roots less frequently were Rhizoctonia solani, Phytophthora sp., Macrophomina phaseolina, Fusarium oxysporum, F. roseum, and F. solani. Cultures of R. solani, Phytophthora sp., and M. phaseolina were less pathogenic on lentil roots than either Pythium sp., whereas the three Fusarium spp. were nonpathogens. Incidence and severity of root rot increased in Karaj field trials in treatments receiving N and P fertilizer and irrigation every 6 days. In greenhouse tests, incidence of root rot increased when naturally infested Karaj soils were amended with 1 or 10% cow manure before planting. Sources of resistance to the lentil root rot complex were found in germplasm screened in naturally infested soils at Karaj.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 288-288 ◽  
Author(s):  
S. Chatterton ◽  
R. Bowness ◽  
M. W. Harding

In recent years, root rots have severely impacted yields of field pea (Pisum sativum L.) in the Canadian province of Alberta. Above-normal precipitation levels in the springs of 2011 to 2013 led to the hypothesis that Aphanomyces euteiches Drechsler may play a role in root rot in water-saturated pea fields. To determine causal agent(s) of root rot, 145 pea fields were surveyed at flowering in July 2013 (1). Symptoms of root rot were abundant; the most prominent included red vascular streaking and dark brown rot of the tap root, indicative of Fusarium spp., but brown discoloration and cortical decay of lateral roots, indicative of A. euteiches, was also observed. Total genomic DNA was extracted from diseased root samples from each field, using the Qiagen DNeasy Plant kit, and amplified with species-specific primers for A. euteiches (2). Fusarium spp. were present in all fields, but seven fields located within a 200-km radius yielded a positive reaction for A. euteiches. Five fields were re-visited in May 2014 to collect soil for a bait test (3). Tests were performed using surface-sterilized pea seeds (cv. CDC Meadow) treated with Allegiance FL (Bayer, a.i. metalaxyl) at a rate of 110 ml/kg of seed. Five seeds per pot were planted into field soils in 10-cm pots with 12 replicate pots per field. Soils were irrigated as needed until the second-node stage and then kept at saturation for 14 days. Thirty day-old pea roots were evaluated for root rot symptoms; plated onto cornmeal agar amended with metalaxyl, benomyl, and vancomycin (MBV) without surface sterilization; and visualized microscopically for presence of oospores in the roots. Roots from three out of the five field soils showed symptoms typical of A. euteiches infection, including honey-brown discoloration, degradation of the root cortex, and presence of oospores. Root rot symptoms from the remaining fields were characteristic of Fusarium root rot, and oospores were not observed in roots. Fungal cultures with fast-growing, white, aerial mycelia characteristic of A. euteiches on MBV, were recovered from roots with Aphanomyces root rot symptoms, and transferred to PDA. To confirm pathogen identity, total DNA was extracted from 7-day-old cultures growing on PDA using the Qiagen DNeasy Plant Kit. The ribosomal DNA internal transcribed spacer (ITS) region was amplified using the primer pair ITS1 and ITS4 and sequenced (4). The sequences, deposited in GenBank with accession numbers KM486065, KM486066, and KM486067, were 100% identical to the ITS rDNA sequence of several isolates of A. euteiches using a BLASTn query. Fusarium spp. were also recovered from all root samples in the soil bait test. Total DNA extracted from roots was used in PCR assays with A. euteiches-specific primers as described above. PCR amplification of root DNA was successful only from the same three fields that showed Aphanomcyces root rot symptoms, further verifying presence of A. euteiches. The inability to detect or recover A. euteiches from two fields that had tested positive in the survey was likely due to patchy distribution of this pathogen and emphasizes the importance of rigorous soil collection methods to accurately detect pathogens. Although this is the first record of A. euteiches on field pea in Alberta, the distribution of A. euteiches within a 200-km radius in southern Alberta indicates that it has likely been present in soils for several years. The interaction between A. euteiches and Fusarium spp. infection in the root rot complex of field pea and their impact on field pea production in Alberta is currently being investigated. References: (1) S. Chatterton et al. Can. Plant Dis. Surv. 94:189, 2014. (2) C. Gangneux et al. Phytopathology 104:1138, 2014. (3) D. Malvick et al. Plant Dis. 78:361, 1994. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


2015 ◽  
Vol 13 (4) ◽  
pp. e1009
Author(s):  
Ana I. Borrego-Benjumea ◽  
José M. Melero-Vara ◽  
María J. Basallote-Ureba

<p><em></em><em>Fusarium oxysporum</em> (<em>Fo</em>), <em>F. proliferatum</em> (<em>Fp</em>) and <em>F. solani</em> (<em>Fs</em>) are causal agents associated with roots of asparagus affected by crown and root rot, a disease inflicting serious losses worldwide. The propagule viability of <em>Fusarium</em> spp. was determined on substrate artificially infested with <em>Fo</em>5<em>, Fp</em>3<em> </em>or <em>Fs</em>2 isolates,<em> </em>amended with either poultry manure (PM), its pellet (PPM), or olive residue compost (ORC) and, thereafter, incubated at 30 or 35°C for different periods. Inoculum viability was significantly affected by these organic amendments (OAs) in combination with temperature and incubation period. The greatest reduction in viability of <em>Fo</em>5 and <em>Fs</em>2 occurred with PPM and loss of viability achieved was higher at 35°C than at 30ºC, and longer incubation period (45 days). However, the viability of <em>Fp</em>3 did not decrease greatly in most of the treatments, as compared to the infested and un-amended control, when incubated at 30ºC. After incubation, seedlings of asparagus `Grande´ were transplanted into pots containing substrates infested with the different species of <em>Fusarium</em>. After three months in greenhouse, symptoms severity in roots showed highly significant decreases, but <em>Fp</em>3 caused lower severity than <em>Fo</em>5 and <em>Fs</em>2. Severity reduction was particularly high at 30ºC (by 15 days incubation for <em>Fs</em>2 and by 30-45 days for <em>Fo</em>5), after PPM treatment, as well as PM-2% for <em>Fo</em>5<em> </em>and <em>Fs</em>2 incubated during 30 and 45 days at both temperatures, and with ORC (15-30 days incubation). Moreover, assessment of plants fresh weight showed significantly high increases in <em>Fo</em>5 and <em>Fs2</em>, with some rates of the three OAs tested, depending on incubation period and temperature.<br /><strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document