scholarly journals Taxonomic composition and incidence of phytopathogenic fungi on the roots of soft spring wheat in the Kansk-Krasnoyarsk forest-steppe

2021 ◽  
Vol 2 (44) ◽  
pp. 22-22
Author(s):  
Alexander Saakian ◽  
◽  

The taxonomic composition and incidence of phytopathogenic fungi on the roots of soft spring wheat Triticum aestivum L. of nine varieties of Siberian origin (Altayskaya 70, Altayskaya 75, Krasnoyarskaya 12, Novosibirskaya 15, Novosibirskaya 16, Novosibirskaya 29, Novosibirskaya 31, Novosibirskaya 41 and Svirel) cultivated using wheat and fallow as a predecessor, was studied in the area of Kansk-Krasnoyarsk forest-steppe. Average incidence of fungal root infection was 24%. In plants grown using wheat as a predecessor, the incidence was statistically significantly (p <0.05) higher than in plants grown using fallow as a predecessor (27.3 versus 20.6%). Statistically significant (p <0.05) differences in the prevalence of root infection were revealed between cultivars. The maximal prevalence (33.3 and 32.3%, respectively) on average for the wheat predecessor and fallow was found for the varieties Svirel and Altayskaya 75, the minimal (16.7%) for the varieties Novosibirskaya 16 and Altayskaya 70. The complex of phytopathogenic fungi on the roots is represented by Fusarium spp., Bipolaris sorokiniana and Alternaria spp. (31.4, 44.9 and 23.7% of the pathogenic complex on average for varieties and variants, respectively). The composition of pathogens statistically significantly (p <0.01) depends on the predecessor. In the plants cultivated using wheat as a predecessor, the proportion of Alternaria spp. was higher whereas proportions of Fusarium spp. and Bipolaris sorokiniana were lower. No differences in prevalence and taxonomic composition of root infection between varieties originated from Novosibirsk territory, Krasnoyarsk territory and Altay territory were found. Keywords: SPRING WHEAT, ROOT ROT, KRASNOYARSK TERRITORY, FUSARIUM SPP., BIPOLARIS SOROKINIANA, ALTERNARIA SPP

Author(s):  
S. N. Posazhennikov ◽  
E. Iu. Toropova ◽  
О. A. Kazakova

The research aims at evaluation of biological and economic efficiency of melilot cultivation in the southern forest-steppe of Novosibirsk region. The research was conducted in 2010 – 2016 by means of conventional methods. The biological effects of melilot in treatment of wheat underground organs from root rot was 13.9-38.8% (average 31.3%) in the beginning of growing season; in the end of the growing season it was 32.1-66% (average 43%) in comparison with recultivation of spring wheat. The pathogenic complex of root rot consisted of B. sorokiniana (18.343%) and Fusarium fungi (63.9-81.7%). The authors found out F. gibbosum, F. sporotrichioides,F. oxysporum, F. avenaceum, F. solani.mong fungi among Fusarium. The research revealed domination of Trichoderma fungi among the antagonistic species. The effect of melilot as a fore crop in increasing spring wheat yield was observed as 31-68,7% (average 44%) with a simultaneous decrease in Bipolaris sorokiniana grain population and Fusarium fungi in 2 times in comparison with re-cultivation of spring wheat. The authors highlight that economic evaluation of melilot cultivation in the southern forest-steppe of Novosibirsk region is 80.7% profitable in case melilot is grown as a fore crop of spring wheat. IThe authors observed reducing grain costs on 53.4 RUB/ hwt compared to recultivation of wheat. Comprehensive economic assessment of melilot cultivation showed higher profitability caused by sale of honey and haylage harvesting.


Author(s):  
В.В. Келер ◽  
С.В. Хижняк ◽  
С.В. Овсянкина ◽  
Д.М. Шеклеин ◽  
Э.Д. Машковская

Цель работы — изучить влияние азотных удобрений на распространённость и таксономический состав вызываемой грибами инфекции семян яровой пшеницы (Triticum aestivum L.). Исследования проводились в 2019–2020 годах. Семь сортов пшеницы (Алтайская 70, Алтайская 75, Курагинская 2, Новосибирская 15, Новосибирская 29, Новосибирская 31, Новосибирская 41) были выращены с использованием зерновых в качестве предшественника, в Минусинском районе Красноярского края, с азотными удобрениями и без удобрений, после чего семена урожая были изучены на наличие фитопатогенных грибов. Патогенный комплекс в семенах был представлен видами Fusarium spp., Bipolaris sorokiniana и Alternaria spp. (соответственно 45,1, 34,3 и 20,6% от общего количества грибных изолятов). Средняя по сортам и вариантам распространённость семенной инфекции составила 41,2%. Удобрение статистически значимо (p<0,001) снизило среднюю распространённость инфекции семян с 50,0% (без удобрения) до 32,4% (с удобрением). Эффект удобрения сильно зависел от сорта. Максимальное снижение распространённости инфекции (63 п.п.) наблюдалось у сорта Новосибирская 29, в то время как у сортов Курагинская 2, Новосибирская 15, Новосибирская 31, Новосибирская 41 снижение составило 11, 33, 18 и 20 п.п. соответственно. Сорт Алтайская 70 не показал статистически значимых различий по распространённости между вариантами с удобрением и без удобрения (соответственно 49 и 43%). У сорта Алтайская 75 удобрение статистически значимо (p<0,05) увеличило распространённость заражения семян на 16 п.п. Удобрение не повлияло на средний состав патогенного комплекса, но статистически значимо изменило таксономический состав патогенного комплекса у отдельных сортов. The aim of this research was to analyze the effect of nitrogen fertilizers on composition and virulence of pathogenic fungi affecting spring wheat seeds (Triticum aestivum L.). The experiment took place in Krasnoyarsk Territory in 2019–2020. Seven wheat varieties were used (“Altayskaya 70”, “Altayskaya 75”, “Kuraginskaya 2”, “Novosibirskaya 15”, “Novosibirskaya 29”, “Novosibirskaya 31”, “Novosibirskaya 41”) planted after gramineous. Such pathogens as Fusarium spp., Bipolaris sorokiniana and Alternaria spp. were found in plant seeds (45.1, 34.3 and 20.6%, respectively). Average infection rate amounted to 41.2%. Fertilizers significantly reduced seed contamination from 50.0% to 32.4% (p<0.001). Fertilizers’ impact significantly depended on genotype. The highest reduction in the infection rate (63 p. p. — percentage points) occurred for “Novosibirskaya 29” while “Kuraginskaya 2”, “Novosibirskaya 15”, “Novosibirskaya 31”, “Novosibirskaya 41” showed only 11, 33, 18 and 20 p. p. of decrease, respectively. “Altayskaya 70” showed no statistically significant response after fertilization (49 versus 43% under or without fertilization, respectively). Fertilizers significantly increased “Altayskaya 75” contamination with fungi by 16 p. p. (p<0.05). Fertilization had no effect on pathogen composition in general except for several varieties.


Author(s):  
L. N. Korobova ◽  
T. A. Kizimova ◽  
A. A. Pobelenskaya ◽  
T. G. Lomova

The authors studied the effect of the bacterial-humic preparation AFG-b containing the spore-forming bacteria Bacillus subtilis and Bacillus amyloliquefaciens in a production experiment in the northern forest-steppe of the Novosibirsk Priob’ye region. The preparation was used on midearly spring wheat, which forms grain at the level of valuable wheat. The drug was used as an antistressant together with herbicides against dicotyledonous and monocotyledonous plants. The tank mixture used was metsulfuron-methyl, fenoxaprop-P-ethyl with the antidote cloquintoset-mexyl and 2-ethyl hexyl ester of 2,4-D with florasulam. The bacterial-humic preparation AFG-b is known to level out herbicide stress in wheat and improve plant health. It improves the condition of leaf cell membranes by preventing the escape of electrolytes from the cells. On the roots of plants one month after applying the antistressant, the authors observed a 1.5-2 times reduction in the development and prevalence of root rot of fusarium-helminthosporiosis etiology. The authors also marked the most pronounced phytosanitary effect of the preparation’s bacteria, which are antagonists of phytopatho- gens for plants’ primary roots and epicotyl. An increase in plant productivity manifests the anti-stress and growth-stimulating effect of AFG-b. During the growing season of 2020, the bio preparation combined with herbicides provided a reliable increase of 40.2% of the grain of spring wheat and improved its quality by enhancing the protein and gluten content. Under 2019 conditions, AFG-b increased grain yield relative to herbicides by about 8% and did not affect grain quality. Application of AFG-b as an anti-stressant is not accompanied by improvement of seed quality of the new crop. It does not improve its phytosanitary status in infestation by phytopathogens Bipolaris sorokiniana, Fusarium sp., Alternaria, Stagonospora nodorum, Penicillium and Aspergillus relative to herbicides alone.


2020 ◽  
Vol 50 (2) ◽  
pp. 39-46
Author(s):  
A. A. Razina ◽  
F. S. Sultanov ◽  
О. G. Dyatlova

The results of studying resistance of mid-ripening spring wheat cultivars to root rot in the forest-steppe zone of Irkutsk region are presented. The study was conducted in a two-factor field experiment. Factor A – mid-ripening spring wheat cultivars: Tulunskaya 11 (control), Zoryana, Маrsianka, Stolypinka (new cultivars). Factor B – seeding dates: May 10, 20, 30, preceded by fallow. The experimental plot area was 70.0 m2. The experiment was repeated three times. Plot arrangement was randomized. Root rot prevalence was determined during the tillering phase of the crop. In 2018, the sowing dates did not affect the disease due to the long spring-summer drought (May-June) and a higher average daily temperature compared to long-term average values. In arid and cold conditions of May 2019, with the late sowing period (May 30), root rot prevalence was significantly lower than when sowing on May 10 and 20. In 2019, a higher level of the disease was registered than in 2018 by 14.3%. Significant differences in root rot prevalence in both years of research were noted between the control cultivar Tulunskaya 11 and the new cultivars of spring wheat Zoryana and Stolypinka. In the tillering phase of the latter two, disease indicators were lower by 5.6% and 10.5% in 2018, and by 8.8% and 7.9% in 2019, respectively. Маrsianka cultivar was at the control level for this indicator. The best cultivar under study was Stolypinka, which was not only less affected by root rot, but also gave a statistically significant yield increase of 0.16 t/ ha in 2018 and 0.22 t/ha in 2019.


Plant Disease ◽  
2002 ◽  
Vol 86 (7) ◽  
pp. 813-813
Author(s):  
J. P. Mansilla ◽  
O. Aguín ◽  
M. C. Salinero

Camellias are widely cultivated in gardens and grown in nurseries for plant and flower production in northwestern Spain. Camellia japonica L. is most frequently grown, but many other camellia species and hybrids are also produced. In spring 1998, plants of Camellia sp. from a garden were observed to be affected by a root fungal pathogen, that formed a white mycelium that covered most of the roots, while aboveground plant parts showed a general decline. Infected roots were macerated and discolored. Fragments of the infected roots were surface-sterilized and placed in petri dishes containing potato dextrose agar and incubated at 24°C in the dark. The fungus formed a white mycelium that turned black in 1 week, developing pyriform swellings characteristic of Rosellinia necatrix Prill (1). To confirm pathogenicity, inoculum of the isolate was produced on wheat (Triticum aestivum L.) seeds autoclaved in glass vessels for 30 min at 120°C. Wheat seed cultures were started from disks of R. necatrix mycelium and grown at 24°C in the dark for 30 days. Pathogenicity tests were conducted on 48 2-year-old plants of the hybrid Camellia × williamsii cv. Mary Phoebe Taylor, which had been grown in 1.5-liter pots (one plant per pot) filled with soil in a glasshouse. The R. necatrix isolate was inoculated by adding 30 g of infected wheat seeds to each pot. The inoculum was mixed thoroughly with the substrate before potting. Another set of pots was left uninoculated, and served as a control. All pots were randomly arranged in a growth chamber at 22 to 24°C with a 12-h photoperiod. Seventeen days after inoculation, aerial symptoms of chlorosis and leaf fall were observed, while control plants remained symptomless. Inoculated plants died 3 months after inoculation. R. necatrix was reisolated from roots of all infected plants. To our knowledge, this is the first report of a root rot of camellia caused by R. necatrix, a pathogen causing white root rot mainly in deciduous fruit crops. Reference: (1) S. Freeman and A. Sztejnberg. Pages 71–73 in: Methods for Research on Soilborne Phytopathogenic Fungi. The American Phytopathological Society, St. Paul, MN, 1992.


2020 ◽  
Vol 21 ◽  
pp. 00034
Author(s):  
Alfia Razina ◽  
Olga Dyatlova

We present the results of the trial of the biological drug BisolbiSan (Bacillus subtillis strain H-13, isolated by the All-Russian Research Institute of Agricultural Microbiology) for treatment of spring wheat seeds in comparison with the widely popular chemical fungicides Maxim and Maxim Plus in the forest-steppe zone of Eastern Siberia in 2016–2018. BisolbiSan contributed to a decrease in total seed contamination by 2.4 times compared to control, which was practically at the level of the chemical fungicide Maxim. Maxim and Maxim Plus oppressed the growth of the sprout and the main germ line, while BisolbiSan stimulated the growth and development of the root system, and did not inhibit the growth of the sprout. The prevalence of root rot in the variant with BisolbiSan was lower compared to control by 54 %, effectiveness of which was not significantly inferior to that of chemical protectants. In comparison with control variant, BisolbiSan increased vitreous content of grain by 16.9 %, the content of crude gluten by 3.9 %, contributed to obtaining a statistically reliable increase in the yield of 0.38 tons per hectare, which did not differ significantly from the increase in the variant with chemical protectants. In our experiment, the payback of 1 ruble of costs when treating seeds with BisolbiSan was 1.7, which is 0.5 and 0.2 rubles higher compared to Maxim and Maxim Plus, respectively. The profitability of the yield increase using BisolbiSan was 70.9 %, which is 54.5 % and 20.6 % more than when using Maxim and Maxim Plus, respectively.


2020 ◽  
Vol 161 ◽  
pp. 01102
Author(s):  
Alfia Razina

Energy-saving technologies of wheat cultivation limit the buffer role of the agrotechnical method in reducing the spread of root rot. This situation calls for using increased volumes of pesticides in order to decrease harvest losses arising from actions of harmful organisms, which does not allow to produce organic food.Considering this, evaluation of the efficiency of agrotechnical methods of cultivating spring wheat aimed at enhancing phytosanitary conditions of crops is very important. The goal of our work was to evaluate the role of predecessors, methods of soil preparation,organic fertilizers, new varieties of spring wheat, and the timing of planting in limiting the spread and reducing the harmfulness of root rot. Our study has been conducted in the forest-steppe zone of Eastern Siberia. We have established that green manure in crop rotationandfallow arable land with introduction of 30 t/ha of organic manure fertilizer with a disc harrow to a depth of 10–12 cmreduce the spread and severity of root rot and increase wheat yields. In the plantings of the new variety of spring wheat Marsianka, the spread of the disease was reliably less,and the yield was higher compared to the control variety Tulunskaya 11. The optimal planting date for the average of two years was May 25, the crops planted then compared to those planted on May 30 were 9.4% less affected by the disease and gave a reliable increase in the harvest of 0.15 tons/ha. Our studies have shown that during production of organic wheat we can limit the spread andharmfulness of root rot withagrotechnical methods.


1979 ◽  
Vol 57 (24) ◽  
pp. 2771-2775 ◽  
Author(s):  
R. J. Rennie ◽  
R. I. Larson

The modification of the genotype of the Cadet and Rescue cultivars of spring wheat (Triticum aestivum L. emend. Thell) by disomic chromosome substitution altered the amount of plant nitrogen derived from dinitrogen fixation by the associated bacterium in a phytotron experiment. With the exception of the C-R5B line, inoculation of the parent Cadet or its substitution lines with either the bacillus C-11-25 or Azospirillum brasilense increased plant dry matter and the total N yield. Rescue lines were unaffected by inoculation unless genotypically altered by substitution of the 5B or 5D chromosome from Cadet. Different substitution lines reacted uniquely to inoculation with the specific bacteria: C-R2A and R-C2D promoted greater dinitrogen fixation by A. brasilense; C-R5D, R-C5B, and R-C5D promoted greater dinitrogen fixation by the C-11-25 bacillus. Both bacteria had high and identical levels of dinitrogen fixation in association with the C-R2D line; neither bacterium fixed N when grown in association with the C-R5B, Rescue, or R-C2A lines. Although the ability of spring wheat to induce dinitrogen fixation in associated bacteria is influenced by chromosomes 5B (which controls root rot reaction) and 5D, it does not appear to be directly related to reaction to common root rot.


2015 ◽  
Vol 10 (3) ◽  
pp. 134-139
Author(s):  
Тимошенкова ◽  
Tatyana Timoshenkova ◽  
Мухитов ◽  
Lenar Mukhitov ◽  
Самуилов ◽  
...  

The article summarizes the results of surveys on the development of the spring wheat disease. The composition of the pathogenic complex in the Orenburg region was analyzed. The paper cites an assessment of the stability of varieties of different origin in the forest steppe and steppe zones of Orenburg Urals. The most common and harmful diseases of spring wheat were: brown leaf rust (Puccinia triticina), stem rust (Puccinia graminis), oidium (Erysiphe graminis, Blumeria graminis Speer.), helminthiasis and fusariose root rot (Bipolaris sorokiniana and Fusarium spp.). Among the samples of local breeding Orenburgskaya 13 variety was the strongly susceptible to the disease of wheat. Logachevka and Uchitel variety were mildly susceptible. Varyag variety was characterized by susceptibility to leaf rust, oidium and dust-brand. According to the complex resistance to diseases of the local races of wheat, we can allocate the following varieties: in the forest-steppe zone: Kinelskaya 59, Kinelskaya 60, Saratovskaya 55, Tulaykovskaya 5, steppe Tulaykovskaya, YuV 4 and in the steppe zone - Belyanka, Saratovskaya 70, Tulaykovskaya 10 and steppe Tulaykovskaya. The inclusion of these varieties in the hybridization will provide a more disease-resistant hybrids and new varieties of spring wheat.


Sign in / Sign up

Export Citation Format

Share Document