The Invasive Aquatic Macrophyte, Water Hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae}: Problems and Prospects

2011 ◽  
Vol 5 (6) ◽  
pp. 509-520 ◽  
Author(s):  
P.E. Ndimele ◽  
C.A. Kumolu-Joh ◽  
M.A. Anetekhai
Author(s):  
Ogochukwu Ann Udume ◽  
Gideon O. Abu ◽  
Herbert Okechukwu Stanley

Water Hyacinth (Eichhornia crassipes), an aquatic macrophyte, is a resource that has attracted a lot of interest in recent times. The physicochemical constituents of Eichhornia crassipes have been reported in some literature to constitute high carbon, nitrogen, phosphorus, potassium including other important micro and macronutrient like potassium and zinc. These findings by scientists informed its utilization in the assemblage of animal feed, bio-energy generation, pharmaceutical industries, and biofilters. The bioconversions of this problematic plant to various products (compost, biochar, and digestate) are green inexpensive options to be considered for use in the restoration of hydrocarbon polluted sites is reviewed in the paper. In addition to crude oil pollution clean-ups, compost improves soil fertility and also increases its organic matter content. This article also shall review composting, Water Hyacinth compost applications in remediation, remediation monitoring parameters, limitations of remediation by composting technology, and the way forward.


2017 ◽  
Vol 30 (3) ◽  
pp. 158
Author(s):  
K. Sivaraman ◽  
A. G. Murugesan

Water hyacinth (<em>Eichhornia crassipes</em>) is an invasive aquatic macrophyte which creates several problems in irrigation system of rivers. To control their rapid distribution in water bodies the biological control method was carried by employing weevils <em>Neochetina bruchi</em> and <em>Neochetina eichhorniae</em> on river based field trial. The study demonstrates effectiveness of biocontrol weevil open field release on experimental site (Chittar river). When compared to first release in field, the weevil intensity was increased in numbers. Active scraping was observed in the leaves and decay spots were seen in the stems of weed. Both <em>N. bruchi</em> and <em>N. eichhorniae</em> (250 No) were introduced biyearly at experimental site for one year. During these two years of observation period, stunted growth and reduced population were observed in the study site. The study highlights importance of <em>Neochetina</em> spp. on the management of <em>E. crassipes.</em>


2009 ◽  
Vol 29 (3) ◽  
pp. 466-473 ◽  
Author(s):  
Juliana B. R. Mees ◽  
Simone D. Gomes ◽  
Márcio A. Vilas Boas ◽  
Ajadir Fazolo ◽  
Sílvio C. Sampaio

The objective of this research was to evaluate the performance of the aquatic macrophyte Eichhornia crassipes applied in situ in a slaughter house treatment system, located in the west of the Paraná state, Brazil, regarding the nutrients removal and organic matter. Moreover, it aimed to obtain data from the production, management and composting practices of the biomass generated in the system. During 11 months of macrophytes development, physic and chemical parameters were monitored and plant density was controlled by periodical removal of excess biomass, which was weekly monitored and it is expressed in kg of aquatic plant per m² covered area. The degradation of the macrophytes removed from the treatment system was evaluated at the pilot scale in eight composting piles of 0.60 m³ that underwent four different treatments and two repetitions: T1 - water hyacinth (Eichhornia crassipes); T2 - water hyacinth and swine excrement (7:1), T3 - water hyacinth, swine excrement and earth (7:1:0,67), and T4 - water hyacinth, swine excrement and cellulosic gut (7:1:0,67), for a period of 90 days. The results indicated maximum removal efficiencies of 77.2% for COD; 77.8% for BOD, 87.9% for total nitrogen, 47.5% for ammonia nitrogen and 38.9% for total phosphorus for a five-day retention time. For biomass stabilization by composting, considering the C:N ratio as an indicator of compost maturity, it was observed that treatment T4 resulted in the shortest stabilization period (60 days). No difference was verified in the biostabilization rates at 5% level by the F test.


2019 ◽  
Vol 2 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Jimmy Jimmy ◽  
Diah Indriani Widiputri ◽  
Paulus Gunawan

Eichhornia crassipes is well-known as water hyacinth. Water hyacinth grows rapidly in the nutrient-rich water and high light intensity places. The uncontrollable growth of water hyacinth has caused many negative impacts to the environment. For instance, interrupted water transport and decreased population of aquatic lives. The capacity of utilising water hyacinth is slower than water hyacinth growth and water hyacinth is still considered as a threat to theecosystem. This work was focused on the study of the pharmacological activity and heavy metal content of water hyacinth in Lake Cipondoh, Tangerang. Fresh water hyacinth was pre-treated through oven-drying and milling process. After that, each part of the plant was macerated by using multiple extraction method with 96% ethanol/water and three variations of sample-to-solvent ratios (1:30, 1:50, and 1:75 w/v). The result of the experiment showed thatwater hyacinth leaves produced an extract with lowest IC 50 (55.76 ± 6.73 ppm) compared toother parts. The most optimum solvent used to achieve this result was 96% ethanol/water (1:1 v/v). In order to obtain the lowest antioxidant activity, the sample to solvent ratio used was 1:50 and the heavy metal in the extract was very low. With this result, it was concluded that there is a promising opportunity to apply the water hyacinth growing in Lake Cipondoh, Tangerang as herbal medicine ingredient. Through this utilization, the overall number of water hyacinth in Indonesia can be reduced or at the least be controlled, so that the environmental problem caused by this plant can be minimized.


2021 ◽  
pp. 1-12
Author(s):  
Kannan Kilavan Packiam ◽  
Bharani Murugesan ◽  
Pavithra Mettupalayam Kaliyannan Sundaramoorthy ◽  
Harshini Srinivasan ◽  
Keerthika Dhanasekaran

Cellulose ◽  
2021 ◽  
Author(s):  
Iris Amanda A. Silva ◽  
Osmir Fabiano L. de Macedo ◽  
Graziele C. Cunha ◽  
Rhayza Victoria Matos Oliveira ◽  
Luciane P. C. Romão

AbstractUrea-based multi-coated slow release fertilizer was produced using water hyacinth, humic substances, and chitosan, with water rich in natural organic matter as a solvent. Elemental analysis showed that the nitrogen content of the fertilizer (FERT) was around 20%. Swelling tests demonstrated the effectiveness of the water hyacinth crosslinker, which reduced the water permeability of the material. Leaching tests showed that FERT released a very low concentration of ammonium (0.82 mg L−1), compared to the amount released from urea (43.1 mg L−1). No nitrate leaching was observed for FERT, while urea leached 13.1 mg L−1 of nitrate. In water and soil, FERT showed maximum releases after 30 and 40 days, respectively, while urea reached maxima in just 2 and 5 days, respectively. The results demonstrated the promising ability of FERT to reduce nitrogen losses, as well as to minimize environmental impacts in the soil–plant-atmosphere system and to improve the efficiency of nitrogen fertilization. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document