Spatio-Temporal Distribution of Heavy Metals in Sediments and Surface Water in Stubbs Creek, Nigeria

2006 ◽  
Vol 1 (3) ◽  
pp. 292-300 ◽  
Author(s):  
Essien D. Udosen . ◽  
Nsikak U. Benson .
2020 ◽  
Vol 158 ◽  
pp. 111343 ◽  
Author(s):  
Weiwei Zhang ◽  
Shoufeng Zhang ◽  
Qian Zhao ◽  
Ling Qu ◽  
Deyi Ma ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. 123-131
Author(s):  
V.I. Chukwuemeka ◽  
E.A. Jimoh ◽  
K.O. Olajide ◽  
Y.I. Auta ◽  
H.S. Auta ◽  
...  

The high contamination of aquatic systems with toxic heavy metals is of major concern since the elements are not biodegradable. Heavy metals often get into the water through runoff from farmlands and dumping of effluents from industries into the water bodies. The toxicity of these heavy metals can cause harmful and even lethal effects on the human health. The objective of this study was to investigate the level of Pb, Cu, Mn, and Fe in both surface water and sediment of Tagwai Lake. Atomic Absorption Spectrometry investigation was carried out on the collected and digested water and sediment samples to determine the extent of these heavy metals contamination in the water. The results showed that the average concentration of heavy metals ranked in the following order: Pb>Mn>Cu>Fe with higher concentration in sediment compared to the water. The correspondence of the mean concentrations of heavy metals in water and sediment of the Tagwai Lake with the WHO standard suggests that the mean concentration of Pb, Cu, and Fe lies within the standard range while Mn exceeds the standard range in both the water and sediments. We therefore advocate regular surveillance as a tool for monitoring impacts of anthropogenic activities in the lake to ensure safety of the general populace who depend on it for their livelihood. Keywords: spatio-temporal, heavy metals, sediments, Tagwai Lake


Author(s):  
Ruru Han ◽  
Beihai Zhou ◽  
Huilun Chen

In recent decades, environmental health risk caused by heavy metals in industrial wastewater (EHR-IHM) has become a serious issue globally, especially for China. Given the spatial difference of heavy metal emissions, hydrogeography, population distribution, etc., it is essential to estimate China’s EHR-IHM from a high-resolution perspective. Based on the framework of USEtox, this study constructs an environmental health risk assessment method for heavy metals discharged from industrial wastewater by coupling the Pollutant Accumulation Model (PAM). This method also considers the process of heavy metal flows between upstream and downstream areas. Based on this constructed method, we investigate the spatio-temporal distribution of EHR-IHM of As, Cd, Cr(VI), Hg, and Pb in China from 1999 to 2018. Results showed that the EHR-IHM in China increased rapidly during 1999–2007 and decreased gradually during 2007–2018, with the highest Damage Level (DL) of 6.8 × 104 disability-adjusted life years (DALY). As and Cr(VI) were the major heavy metal pollutants, which induced 58.9–70.6% and 23.9–36.2% of the total EHR-IHM, respectively. Intake of aquatic products was the dominant exposure route, accounting for over 84.1% of national EHR-IHM, followed by drinking water intake, accounting for 9.5–15.8%. Regarding spatial distribution, the regions with high EHR-IHM are mainly distributed in the middle–lower reaches of the Yangtze River, southeast coastal cities, Bohai Rim, etc.


Sign in / Sign up

Export Citation Format

Share Document