scholarly journals On the converse problem for the Gross-Pitaevskii equations with a large parameter

2014 ◽  
Vol 34 (6) ◽  
pp. 2481-2493 ◽  
Author(s):  
Norman E. Dancer ◽  
Author(s):  
Marius Wolf ◽  
Sergey Solovyev ◽  
Fatemi Arshia

In this paper, analytical equations for the central film thickness in slender elliptic contacts are investigated. A comparison of state-of-the-art formulas with simulation results of a multilevel elastohydrodynamic lubrication solver is conducted and shows considerable deviation. Therefore, a new film thickness formula for slender elliptic contacts with variable ellipticity is derived. It incorporates asymptotic solutions, which results in validity over a large parameter domain. It captures the behaviour of increasing film thickness with increasing load for specific very slender contacts. The new formula proves to be significantly more accurate than current equations. Experimental studies and discussions on minimum film thickness will be presented in a subsequent publication.


2018 ◽  
Vol 70 (3) ◽  
pp. 683-701 ◽  
Author(s):  
Nadir Matringe ◽  
Omer Offen

AbstractWe study a relation between distinction and special values of local invariants for representations of the general linear group over a quadratic extension of p-adic fields. We show that the local Rankin–Selberg root number of any pair of distinguished representation is trivial, and as a corollary we obtain an analogue for the global root number of any pair of distinguished cuspidal representations. We further study the extent to which the gamma factor at 1/2 is trivial for distinguished representations as well as the converse problem.


2001 ◽  
Vol 131 (5) ◽  
pp. 1065-1089
Author(s):  
Daniel M. Elton

We develop a spectral theory for the equation (∇ + ieA) × u = ±mu on Minkowski 3-space (one time variable and two space variables); here, A is a real vector potential and the vector product is defined with respect to the Minkowski metric. This equation was formulated by Elton and Vassiliev, who conjectured that it should have properties similar to those of the two-dimensional Dirac equation. Our equation contains a large parameter c (speed of light), and this motivates the study of the asymptotic behaviour of its spectrum as c → +∞. We show that the essential spectrum of our equation is the same as that of Dirac (theorem 3.1), whereas the discrete spectrum agrees with Dirac to a relative accuracy δλ/mc2 ~ O(c−4) (theorem 3.3). In other words, we show that our equation has the same accuracy as the two-dimensional Pauli equation, its advantage over Pauli being relativistic invariance.


Sign in / Sign up

Export Citation Format

Share Document