scholarly journals Local stability analysis of differential equations with state-dependent delay

2015 ◽  
Vol 36 (6) ◽  
pp. 3445-3461 ◽  
Author(s):  
Eugen Stumpf
Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Mohammed Belmekki ◽  
Kheira Mekhalfi

This paper is devoted to study the existence of mild solutions for semilinear functional differential equations with state-dependent delay involving the Riemann-Liouville fractional derivative in a Banach space and resolvent operator. The arguments are based upon M?nch?s fixed point theoremand the technique of measure of noncompactness.


2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.


Author(s):  
Yu Wang

Abstract A model is developed for analyzing mechanical systems with a pair of bodies with topological changes in their kinematic constraints. It is built upon the concept of Poincaré map rather than following the traditional methods of differential equations. The model provides a set of well-defined and naturally-discrete equations of motion and is capable of giving physical insights of dynamic characteristics of deadbeat convergence of multiple collisions and periodic or chaotic responses. The development of dynamic model and a local stability analysis are presented in Part 1, and the global analysis and numerical simulation are discussed in Part 2.


Sign in / Sign up

Export Citation Format

Share Document