scholarly journals Discontinuity waves as tipping points: Applications to biological & sociological systems

2014 ◽  
Vol 19 (7) ◽  
pp. 1911-1934 ◽  
Author(s):  
John Bissell ◽  
◽  
Brian Straughan

This book gathers together 28 personal stories told by leading thinkers and practitioners in conservation – all of whom have something to say about the uncomfortable tension that arises when data meet dogma. Together, they make a powerful argument for conservation science that measures effectiveness and evolves in response to new data, rather than clinging to its treasured foundational ideas. Several chapters raise doubts about some of conservation’s core tenets, including the notion that habitat fragmentation is bad for biodiversity, biodiversity declines are threatening ecosystem function, non-native species are a net negative for conservation, and fisheries management is failing. Another set of chapters warns of the potent power of conservation narratives: undeniably useful to inspire conservation action, but potentially dangerous in locking in thinking against contrary data. These chapters challenge iconic stories about GM crops, orangutans in oil palm forests, frog feminization, salmon versus dams, rehabilitating oiled otters, and wolves in Yellowstone. A final set of chapters addresses conceptual and methodological approaches such as environmental tipping points, global assessments, payment for ecosystem service programs, and working with corporations. Throughout, examples of confirmation bias emerge—not as dishonesty, but as a human foible that is a challenge for all science, not just conservation science. Graduate students, in particular, will find a wealth of ideas to inspire their own research. Each chapter points to additional data that could help resolve lingering debates and improve conservation effectiveness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick L. Barnard ◽  
Jenifer E. Dugan ◽  
Henry M. Page ◽  
Nathan J. Wood ◽  
Juliette A. Finzi Hart ◽  
...  

AbstractAs the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Els Weinans ◽  
Rick Quax ◽  
Egbert H. van Nes ◽  
Ingrid A. van de Leemput

AbstractVarious complex systems, such as the climate, ecosystems, and physical and mental health can show large shifts in response to small changes in their environment. These ‘tipping points’ are notoriously hard to predict based on trends. However, in the past 20 years several indicators pointing to a loss of resilience have been developed. These indicators use fluctuations in time series to detect critical slowing down preceding a tipping point. Most of the existing indicators are based on models of one-dimensional systems. However, complex systems generally consist of multiple interacting entities. Moreover, because of technological developments and wearables, multivariate time series are becoming increasingly available in different fields of science. In order to apply the framework of resilience indicators to multivariate time series, various extensions have been proposed. Not all multivariate indicators have been tested for the same types of systems and therefore a systematic comparison between the methods is lacking. Here, we evaluate the performance of the different multivariate indicators of resilience loss in different scenarios. We show that there is not one method outperforming the others. Instead, which method is best to use depends on the type of scenario the system is subject to. We propose a set of guidelines to help future users choose which multivariate indicator of resilience is best to use for their particular system.


2021 ◽  
Author(s):  
Stephen C. L. Watson ◽  
Adrian C. Newton ◽  
Lucy E. Ridding ◽  
Paul M. Evans ◽  
Steven Brand ◽  
...  

Abstract Context Agricultural intensification is being widely pursued as a policy option to improve food security and human development. Yet, there is a need to understand the impact of agricultural intensification on the provision of multiple ecosystem services, and to evaluate the possible occurrence of tipping points. Objectives To quantify and assess the long-term spatial dynamics of ecosystem service (ES) provision in a landscape undergoing agricultural intensification at four time points 1930, 1950, 1980 and 2015. Determine if thresholds or tipping points in ES provision may have occurred and if there are any detectable impacts on economic development and employment. Methods We used the InVEST suite of software models together with a time series of historical land cover maps and an Input–Output model to evaluate these dynamics over an 85-year period in the county of Dorset, southern England. Results Results indicated that trends in ES were often non-linear, highlighting the potential for abrupt changes in ES provision to occur in response to slight changes in underlying drivers. Despite the fluctuations in provision of different ES, overall economic activity increased almost linearly during the study interval, in line with the increase in agricultural productivity. Conclusions Such non-linear thresholds in ES will need to be avoided in the future by approaches aiming to deliver sustainable agricultural intensification. A number of positive feedback mechanisms are identified that suggest these thresholds could be considered as tipping points. However, further research into these feedbacks is required to fully determine the occurrence of tipping points in agricultural systems.


Author(s):  
Catherine Goyet ◽  
Mohamed Anis Benallal ◽  
Amandine Bijoux ◽  
Véronique Guglielmi ◽  
Hadjer Moussa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document