scholarly journals Multiple climate change-driven tipping points for coastal systems

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick L. Barnard ◽  
Jenifer E. Dugan ◽  
Henry M. Page ◽  
Nathan J. Wood ◽  
Juliette A. Finzi Hart ◽  
...  

AbstractAs the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.

2021 ◽  
Author(s):  
Patrick Barnard ◽  
Jenifer Dugan ◽  
Henry Page ◽  
Nathan Wood ◽  
Juliette Finzi Hart ◽  
...  

Abstract As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.


Author(s):  
Peter Urich ◽  
Yinpeng Li ◽  
Sennye Masike

AbstractClimate adaptation planning requires new ways of thinking and approaching the analysis of risks. Such thinking needs to be systemic in nature and practice/action-oriented while respecting the complexity of the physical and social sciences. Through this chapter on climate tipping points in Botswana, it is proposed that a generic and practice-oriented analysis framework be applied with a mathematical foundation including modeling methods based on complex science. The objective is to promote a framework that privileges a worldview to avoid biased and partial explanations of risks. An Institutional-Socio-Earth-Economical-Technical systems (ISEET) approach is based on a systems science philosophy for risk governance analysis, with particular emphasis on tipping points and emergence which are some of the key elements that can support sound adaptation planning. Through the lens of the biodiversity sector in Botswana, the complex interrelationships of ISEET principles are explained. They provide a new, efficient, and practical framework for moving rapidly from theory to action for planning and implementing climate change adaption projects.


2020 ◽  
Vol 12 (4) ◽  
pp. 2959-2970
Author(s):  
Maialen Iturbide ◽  
José M. Gutiérrez ◽  
Lincoln M. Alves ◽  
Joaquín Bedia ◽  
Ruth Cerezo-Mota ◽  
...  

Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amanda Oliver

Purpose This study aims to identify Canadian archives that are at risk for climate change threats, to present a snapshot of current practices around disaster planning, sustainability and climate adaptation and to provide recommended next steps for records managers and archivists adapting to climate change. Design/methodology/approach These objectives were achieved by analyzing the geographic locations of Canadian archives in relation to projected climate data and by analyzing the results of a survey distributed to staff at Canadian archival repositories. Findings This study found that all Canadian archives will be impacted by projected changes in both annual mean temperatures and precipitation to the year 2080. Themes that emerged surrounding climate adaptation strategies include the investment in the design and efficiency of spaces housing records and the importance of resilient buildings, the need for increased training on climate change, engaging senior leadership and administrators on climate change and developing regional strategies. Preparing for and mitigating the impact of climate change on the facilities and holdings needs to become a priority. Originality/value This research underscores the importance of developing climate adaptation strategies, considering the sustainability of records management and archival professional practice, increasing the resilience of the facilities and records and strengthening the disaster planning and recovery methods.


2020 ◽  
Author(s):  
Maialen Iturbide ◽  
José Manuel Gutiérrez ◽  
Lincoln Muniz Alves ◽  
Joaquín Bedia ◽  
Ezequiel Cimadevilla ◽  
...  

Abstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 497 ◽  
Author(s):  
Ching-Pin Tung ◽  
Jung-Hsuan Tsao ◽  
Yu-Chuan Tien ◽  
Chung-Yi Lin ◽  
Bing-Chen Jhong

To comprehensively assess the climate risk originating from climate change, this study aims at developing a novel climate adaptation algorithm, representing not only on the basis of Climate Change Adaptation Six Steps (CCA6Steps), but also innovations in climate risk template. The climate risk template is proposed as a climate risk analysis tool based on the procedure of CCA6Steps, including the identification of problems and objectives, the analysis of current and future risks, and the assessment of adaptation options, to identify the relationship between the climate risk components, including hazard, exposure, and vulnerability. An application is implemented to demonstrate the advantages of the proposed algorithm in this study. The results show that the problems and objectives which concern the governance level and stakeholders can be clearly identified by the proposed algorithm. The relationship between climate-related hazards, exposure, and vulnerability of the protected target can also be precisely investigated. Furthermore, the climate adaptation strategies able to mitigate the impact of hazards on the protected target are further discussed in this study. In summary, the proposed climate adaptation algorithm is expected to provide a standard operating procedure and be a useful tool to support climate risk assessment.


Author(s):  
Leonardo Zea-Reyes ◽  
Veronica Olivotto ◽  
Sylvia I. Bergh

AbstractCities around the world are confronted with the need to put in place climate adaptation policies to protect citizens and properties from climate change impacts. This article applies components of the framework developed by Moser and Ekström (2010) onto empirical qualitative data to diagnose institutional barriers to climate change adaptation in the Municipality of Beirut, Lebanon. Our approach reveals the presence of two vicious cycles influencing each other. In the first cycle, the root cause barrier is major political interference generating competing priorities and poor individual interest in climate change. A second vicious cycle is derived from feedbacks caused by the first and leading to the absence of a dedicated department where sector specific climate risk information is gathered and shared with other departments, limited knowledge and scientific understanding, as well as a distorted framing or vision, where climate change is considered unrelated to other issues and is to be dealt with at higher levels of government. The article also highlights the need to analyze interlinkages between barriers in order to suggest how to overcome them. The most common way to overcome barriers according to interviewees is through national and international support followed by the creation of a data bank. These opportunities could be explored by national and international policy-makers to break the deadlock in Beirut.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2021 ◽  
Vol 13 (12) ◽  
pp. 6517
Author(s):  
Innocent Chirisa ◽  
Trynos Gumbo ◽  
Veronica N. Gundu-Jakarasi ◽  
Washington Zhakata ◽  
Thomas Karakadzai ◽  
...  

Reducing vulnerability to climate change and enhancing the long-term coping capacities of rural or urban settlements to negative climate change impacts have become urgent issues in developing countries. Developing countries do not have the means to cope with climate hazards and their economies are highly dependent on climate-sensitive sectors such as agriculture, water, and coastal zones. Like most countries in Southern Africa, Zimbabwe suffers from climate-induced disasters. Therefore, this study maps critical aspects required for setting up a strong financial foundation for sustainable climate adaptation in Zimbabwe. It discusses the frameworks required for sustainable climate adaptation finance and suggests the direction for success in leveraging global climate financing towards building a low-carbon and climate-resilient Zimbabwe. The study involved a document review and analysis and stakeholder consultation methodological approach. The findings revealed that Zimbabwe has been significantly dependent on global finance mechanisms to mitigate the effects of climate change as its domestic finance mechanisms have not been fully explored. Results revealed the importance of partnership models between the state, individuals, civil society organisations, and agencies. Local financing institutions such as the Infrastructure Development Bank of Zimbabwe (IDBZ) have been set up. This operates a Climate Finance Facility (GFF), providing a domestic financial resource base. A climate change bill is also under formulation through government efforts. However, numerous barriers limit the adoption of adaptation practices, services, and technologies at the scale required. The absence of finance increases the vulnerability of local settlements (rural or urban) to extreme weather events leading to loss of life and property and compromised adaptive capacity. Therefore, the study recommends an adaptation financing framework aligned to different sectoral policies that can leverage diverse opportunities such as blended climate financing. The framework must foster synergies for improved impact and implementation of climate change adaptation initiatives for the country.


Sign in / Sign up

Export Citation Format

Share Document