scholarly journals Practical partial stability of time-varying systems

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Abdelfettah Hamzaoui ◽  
Nizar Hadj Taieb ◽  
Mohamed Ali Hammami

<p style='text-indent:20px;'>In this paper we investigate the practical asymptotic and exponential partial stability of time-varying nonlinear systems. We derive some sufficient conditions that guarantee practical partial stability of perturbed systems using Lyapunov's theory where a converse theorem is presented. Therefore, we generalize some works which are already made in the literature. Furthermore, we present some illustrative examples to verify the effectiveness of the proposed methods.</p>

Author(s):  
Sinan Kilicaslan ◽  
Stephen P. Banks

A necessary condition for the existence of the solution of the Riccati differential equation for both linear, time varying systems and nonlinear systems is introduced. First, a necessary condition for the existence of the solution of the Riccati differential equation for linear, time varying systems is proposed. Then, the sufficient conditions to satisfy the necessary condition are given. After that, the existence of the solution of the Riccati differential equation is generalized for nonlinear systems.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950066
Author(s):  
Boulbaba Ghanmi

This paper investigates the stability analysis with respect to part of the variables of nonlinear time-varying systems with impulse effect. The approach presented is based on the specially introduced piecewise continuous Lyapunov functions. The Lyapunov stability theorems with respect to part of the variables are generalized in the sense that the time derivatives of the Lyapunov functions are allowed to be indefinite. With the help of the notion of stable functions, asymptotic partial stability, exponential partial stability, input-to-state partial stability (ISPS) and integral input-to-state partial stability (iISPS) are considered. Three numerical examples are provided to illustrate the effectiveness of the proposed theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
N. Yotha ◽  
T. Botmart ◽  
T. Mouktonglang

The problem of exponential stability for a class of switched nonlinear systems with discrete and distributed time-varying delays is studied. The constraint on the derivative of the time-varying delay is not required which allows the time delay to be a fast time-varying function. We study the stability properties of switched nonlinear systems consisting of both stable and unstable subsystems. Average dwell-time approached and improved piecewise Lyapunov functional combined with Leibniz-Newton are formulated. New delay-dependent sufficient conditions for the exponential stabilization of the switched systems are first established in terms of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yuangong Sun ◽  
Fanwei Meng

This paper studies the problem of reachable set estimation for a class of nonlinear time-varying systems with disturbances. New necessary and (or) sufficient conditions are derived for the existence of a ball such that all the solutions of the system converge asymptotically within it. Explicit estimation on the decay rate is also presented. The method used in this paper is motivated by that for positive systems, which is different from the conventional Lyapunov-Krasovskii functional method. A numerical example is given to illustrate the effectiveness of the obtained result.


2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.


2021 ◽  
Vol 3 (1) ◽  
pp. 17-20
Author(s):  
Tadeusz Kaczorek ◽  
Łukasz Sajewski

The global stability of positive  discrete-time time-varying nonlinear systems with time-varying scalar feedbacks is investigated. Sufficient conditions for the asymptotic stability of discrete-time positive time-varying linear systems are given. The new conditions are applied to discrete-time positive time-varying nonlinear systems with time-varying feedbacks. Sufficient conditions are established for the global stability of the discrete-time positive time-varying nonlinear systems with feedbacks.


Sign in / Sign up

Export Citation Format

Share Document