scholarly journals Effects of fear and anti-predator response in a discrete system with delay

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ritwick Banerjee ◽  
Pritha Das ◽  
Debasis Mukherjee

<p style='text-indent:20px;'>In this paper a discrete-time two prey one predator model is considered with delay and Holling Type-Ⅲ functional response. The cost of fear of predation and the effect of anti-predator behavior of the prey is incorporated in the model, coupled with inter-specific competition among the prey species and intra-specific competition within the predator. The conditions for existence of the equilibrium points are obtained. We further derive the sufficient conditions for permanence and global stability of the co-existence equilibrium point. It is observed that the effect of fear induces stability in the system by eliminating the periodic solutions. On the other hand the effect of anti-predator behavior plays a major role in de-stabilizing the system by giving rise to predator-prey oscillations. Finally, several numerical simulations are performed which support our analytical findings.</p>

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xinxin Liu ◽  
Qingdao Huang

AbstractA new way to study the harvested predator–prey system is presented by analyzing the dynamics of two-prey and one-predator model, in which two teams of prey are interacting with one team of predators and the harvesting functions for two prey species takes different forms. Firstly, we make a brief analysis of the dynamics of the two subsystems which include one predator and one prey, respectively. The positivity and boundedness of the solutions are verified. The existence and stability of seven equilibrium points of the three-species model are further studied. Specifically, the global stability analysis of the coexistence equilibrium point is investigated. The problem of maximum sustainable yield and dynamic optimal yield in finite time is studied. Numerical simulations are performed using MATLAB from four aspects: the role of the carrying capacity of prey, the simulation about the model equations around three biologically significant steady states, simulation for the yield problem of model system, and the comparison between the two forms of harvesting functions. We obtain that the new form of harvesting function is more realistic than the traditional form in the given model, which may be a better reflection of the role of human-made disturbance in the development of the biological system.


2020 ◽  
Vol 8 (2) ◽  
pp. 51-59
Author(s):  
Muhammad Bachtiar Gaib ◽  
Wahdania At. Ja'a

This article examines a competing prey-predator model using the Monod-Haldane response function and anti-predator behavior. This article discusses equilibrium point determination, equilibrium point stability analysis, and numerical simulation. Obtained three equilibrium points, namely T1, T2, and T3, where the equilibrium-point is always saddle, the stability of the equilibrium points T2 and T3 will be stable if it meets the predetermined parameter requirements. There are two cases in the equilibrium point where the first case is vertically stable and the second case is spiral stable.


2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-38
Author(s):  
Sudeshna Mondal ◽  
G. P. Samanta ◽  
Juan J. Nieto

In this work, our aim is to investigate the impact of a non-Kolmogorov predator-prey-subsidy model incorporating nonlinear prey refuge and the effect of fear with Holling type II functional response. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). The positivity and asymptotically uniform boundedness of the solutions of the system have been derived. Analytically, we have studied the criteria for the feasibility and stability of different equilibrium points. In addition, we have derived sufficient conditions for the existence of local bifurcations of codimension 1 (transcritical and Hopf bifurcation). It is also observed that there is some time lag between the time of perceiving predator signals through vocal cues and the reduction of prey’s birth rate. So, we have analyzed the dynamical behaviour of the delayed predator-prey-subsidy model. Numerical computations have been performed using MATLAB to validate all the analytical findings. Numerically, it has been observed that the predator, prey, and subsidy can always exist at a nonzero subsidy input rate. But, at a high subsidy input rate, the prey population cannot persist and the predator population has a huge growth due to the availability of food sources.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950185 ◽  
Author(s):  
Ting Qiao ◽  
Yongli Cai ◽  
Shengmao Fu ◽  
Weiming wang

In this paper, we investigate the influence of anti-predator behavior in prey due to the fear of predators with a Beddington–DeAngelis prey–predator model analytically and numerically. We give the existence and stability of equilibria of the model, and provide the existence of Hopf bifurcation. In addition, we investigate the influence of the fear effect on the population dynamics of the model and find that the fear effect can not only reduce the population density of both predator and prey, but also prevent the occurrence of limit cycle oscillation and increase the stability of the system.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Rajat Kaushik ◽  
Sandip Banerjee

Bachelor herd behavior is very common among juvenile animals who have not become sexually matured but have left their parent groups. The complex grouping or schooling behavior provides vulnerable juveniles refuge from predation and opportunities for foraging, especially when their parents are not within the area to protect them. In spite of this, juvenile/immature prey may easily become victims because of their greenness while on the other hand, adult prey may be invulnerable to attack due to their tricky manoeuvring abilities to escape from the predators. In this study, we propose a stage-structured predator–prey model, in which predators attack only the bachelor herds of juvenile prey while adult prey save themselves due to small predator–prey size ratio and their fleeing capability, enabling them to avoid confrontation with the predators. Local and global stability analysis on the equilibrium points of the model are performed. Sufficient conditions for uniform permanence and the impermanence are derived. The model exhibits both transcritical as well as Hopf bifurcations and the corresponding numerical simulations are carried out to support the analytical results. Bachelor herding of juvenile prey as well as inaccessibility of adult prey restricts the uncontrolled predation so that prey abundance and predation remain balanced. This investigation on bachelor group defence brings out some unpredictable results, especially close to the zero steady state. Altogether, bachelor herding of the juvenile prey, which causes unconventional behavior near the origin, plays a significant role in establishing uniform permanence conditions, also increases richness of the dynamics in numerical simulations using the bifurcation theory and thereby, shapes ecosystem properties tremendously and may have a large influence on the ecosystem functioning.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Guodong Liu ◽  
Zhengbo Chang ◽  
Xinzhu Meng

In this paper, we investigate the stochastic dynamics of two dispersal predator-prey systems perturbed by white noise, impulsive effect, and regime switching. For the system just interrupted by white noise, we first prove that the stochastic impulsive system has a nontrivial positive periodic solution. Then the sufficient conditions for persistence in mean and extinction of the system are obtained. For the system with Markov regime switching, we verify it is ergodic and has a stationary distribution. And conditions for extinction of the prey species are established. Finally, we provide a series of numerical simulations to illustrate the theoretical analysis.


2001 ◽  
Vol 26 (5) ◽  
pp. 257-267 ◽  
Author(s):  
Irwin E. Schochetman ◽  
Robert L. Smith ◽  
Sze-Kai Tsui

We give necessary and sufficient conditions for the sum of closed subspaces of a Hilbert space to be closed. Specifically, we show that the sum will be closed if and only if the angle between the subspaces is not zero, or if and only if the projection of either space into the orthogonal complement of the other is closed. We also give sufficient conditions for the sum to be closed in terms of the relevant orthogonal projections. As a consequence, we obtain sufficient conditions for the existence of an optimal solution to an abstract quadratic programming problem in terms of the kernels of the cost and constraint operators.


2020 ◽  
Vol 6 (2) ◽  
pp. 93-103
Author(s):  
Muhammad Ikbal ◽  
Riskawati

In this research, we study and construct a dynamic prey-predator model. We include an element of intraspecific competition in both predators. We formulated the Holling type I response function for each predator. We consider all populations to be of economic value so that they can be harvested. We analyze the positive solution, the existence of the equilibrium points, and the stability of the balance points. We obtained the local stability condition by using the Routh-Hurwitz criterion approach. We also simulate the model. This research can be developed with different response function formulations and harvest optimization.


CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 260-269
Author(s):  
Ismail Djakaria ◽  
Muhammad Bachtiar Gaib ◽  
Resmawan Resmawan

This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.


Sign in / Sign up

Export Citation Format

Share Document