scholarly journals ANALISIS KESTABILAN MODEL INTERAKSI PREDATOR-PREY DENGAN FUNGSI RESPON MONOD-HALDANE DAN PERILAKU ANTI PEMANGSA

2020 ◽  
Vol 8 (2) ◽  
pp. 51-59
Author(s):  
Muhammad Bachtiar Gaib ◽  
Wahdania At. Ja'a

This article examines a competing prey-predator model using the Monod-Haldane response function and anti-predator behavior. This article discusses equilibrium point determination, equilibrium point stability analysis, and numerical simulation. Obtained three equilibrium points, namely T1, T2, and T3, where the equilibrium-point is always saddle, the stability of the equilibrium points T2 and T3 will be stable if it meets the predetermined parameter requirements. There are two cases in the equilibrium point where the first case is vertically stable and the second case is spiral stable.

2020 ◽  
Vol 17 (1) ◽  
pp. 50-60
Author(s):  
Nursamsi Nursamsi

Diabetes mellitus (Dm) is a disease associated with impaired immune function so it is more susceptible to get infections including Tuberculosis (Tb). Tb disease can also worsen blood sugar levels which can cause Dm disease. This study aims to analyze and determine the stability of the equilibrium point of the spread of Tb disease in patients with Dm with consideration nine compartments, which are susceptible Tb without Dm, susceptible Tb without Dm complication, susceptible Tb with Dm complication, expose Tb without Dm, expose Tb with Dm, infected Tb without Dm, infected Tb with Dm, recovered Tb without Dm, and recovered Tb with Dm with treatment factors. The result obtained from the analysis of the model is two equilibrium points, which are the non endemic and endemic equilibrium points. The endemic equilibrium point does not exist if , endemic will appear if . Analytical and numerical simulation show that the spread of disease can be reduced and stopped if treatment is given to the infected compartment.


CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 260-269
Author(s):  
Ismail Djakaria ◽  
Muhammad Bachtiar Gaib ◽  
Resmawan Resmawan

This paper discusses the analysis of the Rosenzweig-MacArthur predator-prey model with anti-predator behavior. The analysis is started by determining the equilibrium points, existence, and conditions of the stability. Identifying the type of Hopf bifurcation by using the divergence criterion. It has shown that the model has three equilibrium points, i.e., the extinction of population equilibrium point (E0), the non-predatory equilibrium point (E1), and the co-existence equilibrium point (E2). The existence and stability of each equilibrium point can be shown by satisfying several conditions of parameters. The divergence criterion indicates the existence of the supercritical Hopf-bifurcation around the equilibrium point E2. Finally, our model's dynamics population is confirmed by our numerical simulations by using the 4th-order Runge-Kutta methods.


Jurnal Varian ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9-16
Author(s):  
Didiharyono D. ◽  
Irwan Kasse

The focus of the study in this paper is to model deforestation due to population density and industrialization. To begin with, it is formulated into a mathematical modelling which is a system of non-linear differential equations. Then, analyze the stability of the system based on the Routh-Hurwitz stability criteria. Furthermore, a numerical simulation is performed to determine the shift of a system. The results of the analysis to shown that there are seven non-negative equilibrium points, which in general consist equilibrium point of disturbance-free and equilibrium points of disturbances. Equilibrium point TE7(x, y, z) analyzed to shown asymptotically stable conditions based on the Routh-Hurwitz stability criteria. The numerical simulation results show that if the stability conditions of a system have been met, the system movement always occurs around the equilibrium point.


Author(s):  
Huda Abdul Satar ◽  
Raid Kamel Naji

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.


2013 ◽  
Vol 805-806 ◽  
pp. 1957-1961
Author(s):  
Ting Wu

In this paper, a predator-prey system with functional response is studied,and a set of sufficient conditions are obtained for the stability of equilibrium point of the system. Moreover, optimal harvesting policy is obtained by using the maximal principle,and numerical simulation is applied to illustrate the correctness.


2021 ◽  
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

This paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R0<1 and unstable at R0>1. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


2020 ◽  
Vol 6 (2) ◽  
pp. 93-103
Author(s):  
Muhammad Ikbal ◽  
Riskawati

In this research, we study and construct a dynamic prey-predator model. We include an element of intraspecific competition in both predators. We formulated the Holling type I response function for each predator. We consider all populations to be of economic value so that they can be harvested. We analyze the positive solution, the existence of the equilibrium points, and the stability of the balance points. We obtained the local stability condition by using the Routh-Hurwitz criterion approach. We also simulate the model. This research can be developed with different response function formulations and harvest optimization.


2021 ◽  
Vol 10 (5) ◽  
pp. 2469-2481
Author(s):  
N.A. Hidayati ◽  
A. Suryanto ◽  
W.M. Kusumawinahyu

The ZIKV model presented in this article is developed by modifying \cite{Bonyah2016}’s model. The classical order is changed into fractional order model. The equilibrium points of the model are determined and the stability conditions of each equilibrium point have been done using Routh-Hurwitz conditions. Numerical simulation is presented to verify the result of stability analysis result. Numerical simulation is also used to shows the effect of the order $\alpha$ to the stability of the model’s equilibrium point.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ritwick Banerjee ◽  
Pritha Das ◽  
Debasis Mukherjee

<p style='text-indent:20px;'>In this paper a discrete-time two prey one predator model is considered with delay and Holling Type-Ⅲ functional response. The cost of fear of predation and the effect of anti-predator behavior of the prey is incorporated in the model, coupled with inter-specific competition among the prey species and intra-specific competition within the predator. The conditions for existence of the equilibrium points are obtained. We further derive the sufficient conditions for permanence and global stability of the co-existence equilibrium point. It is observed that the effect of fear induces stability in the system by eliminating the periodic solutions. On the other hand the effect of anti-predator behavior plays a major role in de-stabilizing the system by giving rise to predator-prey oscillations. Finally, several numerical simulations are performed which support our analytical findings.</p>


2021 ◽  
Vol 22 (2) ◽  
pp. 153
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Alfonsina Lisda Puspa Dewi

This article describes the dynamics of local stability equilibrium point models of interaction between prey populations and their predators. The model involves response functions in the form of Holling type III and anti-predator behavior. The existence and stability of the equilibrium point of the model can be obtained by reviewing several cases. One of the factors that affect the existence and local stability of the model equilibrium point is the carrying capacity (k) parameter. If x3∗, y3∗  > 0 is a constant solution of the model and ∈ (0,x3∗), then there is a unique boundary equilibrium point Ek (k , 0). Whereas, if k ∈ (x4∗, y4∗], then Ek (k, 0) is unstable and E3 (x3∗, y3∗) is stable. Furthermore, if k ∈ ( x4∗, ∞), then Ek ( k, 0) remains stable and E4 (x4∗, y4∗) is unstable, but the stability of the equilibrium point E3 (x3∗, y3∗) is branching. The equilibrium point E3 (x3∗, y3∗) can be stable or unstable depending on all parameters involved in the model. Variations of k parameter values are given in numerical simulation to verify the results of the analysis. Numerical simulation indicates that if k = 0,92 then nontrivial equilibrium point Ek (0,92 ; 0) stable. If k = 0,93 then Ek (0,93 ; 0) unstable and E3∗(0,929; 0,00003) stable. If k = 23,94, then Ek (23,94 ; 0) and E3∗(0,929; 0,143) stable, but E4∗(23,93 ; 0,0005) unstable. If k = 38 then Ek(38,0) stable, but E3∗(0,929; 0,145) and E4∗(23,93 ; 0,739) unstable.Keywords: anti-predator behavior, carrying capacity, and holling type III.


Sign in / Sign up

Export Citation Format

Share Document