scholarly journals A new NANOSATs propulsion system: swirling-combustion chamber and water electrolysis

AIMS Energy ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 402-413 ◽  
Author(s):  
Angelo Minotti ◽  
◽  
Author(s):  
Nicholas-E. Harmansa ◽  
Georg Herdrich ◽  
Stefanos Fasoulas ◽  
Ulrich Gotzig

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 190
Author(s):  
Francesco Barato

Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid propulsion system with a much simplified architecture. These characteristics make this kind of propulsion attractive, among others, for applications such as satellites and upper stages. In this paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive implementation, several challenges need to be addressed, which are not the general ones often discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn, must comply some constrains. The regression rate sometime needs to be tailored in order to avoid unreasonable grain shapes, with the consequence that the dimensional trends start to follow some sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat soak-back during long off phases between multiple burns could compromise the integrity of the case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the aspects mentioned in this paper shall be carefully considered and properly faced.


Author(s):  
K. M. Akyuzlu ◽  
K. Albayrak

A one-dimensional, mathematical model is adopted to investigate, numerically, the instabilities experienced inside a hybrid rocket propulsion system. The presumption is that such oscillations feed into combustion instabilities and result in poor performance of the propulsion system and/or result in mechanical vibrations that lead to failure of the rocket motor. The model adopted for the numerical study is a one-dimensional, multi-node representation of a subscale hybrid rocket propulsion system. A one dimensional channel with circular cross-section is configured to simulate a combustion chamber of a rocket hybrid rocket motor and is connected to a converging–diverging nozzle in the downstream and to a plenum with a flow straightener in the upstream side. The working fluid is supplied from a pressurized storage tank to the upstream plenum through a throttle valve. A multi-component approach is used to model, mathematically, the propulsion system. In this integrated-component model, the unsteady flow through the throttle valve and the nozzle is assumed to be one-dimensional and isentropic whereas the flow in the forward plenum and in the combustion chamber is assumed to be a one-dimensional, unsteady, compressible, turbulent, and subsonic. The physics based mathematical model of the flow in the channel consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations of the compressible flow in the combustion chamber are discretized using the second order accurate MacCormack finite difference scheme. Convergence and grid independence studies were done to determine the optimum mesh size and computational time increment needed for the present simulations. Furthermore, steady state results of the proposed model are compared to the results of the isentropic, Fanno (viscous 1-D flow), and Rayleigh (1-D flow with heat input) case studies to verify the accuracy of the numerical predictions. Numerical experiments were then carried out to simulate the flow oscillations in the combustion chamber of a sample subscale hybrid rocket motor. Experiments were repeated for various operating conditions (Re numbers between 104 and 106) to determine the flow regions where these oscillations are sustained. The numerical simulation results indicate that the proposed mathematical model predicts the expected unsteady axial distributions of temperature, velocity, and pressure in the combustion chamber and the general characteristics of the experimentally observed instabilities associated with hybrid rocket propulsion systems.


Author(s):  
C.R. Koppel ◽  
F. Di Matteo ◽  
J. Moral ◽  
J. Steelant

The paper documents the implementation and validation of the coupled simulation of the propulsion system and vehicle performed during the 4th development phase of the ESPSS (European Space Propulsion System Simulation) library running on the existing platform EcosimPro®. This covers a significant update of the spacecraft propulsion system modeling: the Fluid flow, Tanks and Combustion chamber components are updated to allow coupling to the vehicle’s motion, the Archimedes pressure coming from acceleration and rotations given by the vehicle or by any perturbation forces are taken into account, several new features are added to the Satellite library along with new components enabling full attitude control of a platform. A new powerful compact equation is presented for solving elegantly the Archimedes pressure coming from combined acceleration and rotation in the most general case (noncollinear). Eventually, a propulsion system is modeled to check the correct implementation of the new components especially those dealing with the effects of the mission on the propulsion subsystem.


Author(s):  
A.V. Novikov ◽  
E.A. Andreev ◽  
E.I. Bardakova

Low-thrust rocket engines are widely used in rocket and space technology for correcting the position of a spacecraft in orbit, for controlling motion along a trajectory, etc. Their number in the propulsion system can be from one to tens of units. Accordingly, the efficiency of their work significantly affects the perfection of the propulsion system as a whole. The object of the study was the low-thrust rocket engine combustion chamber operating according to the gas-liquid scheme. There were performed computational and parametric studies of various factor effects on the characteristics of the working process in the combustion chamber. The dependences of the coefficient of the consumable complex and parameters of the working process of the low-thrust rocket engine chamber on the influencing factors when using ethanol and kerosene as a fuel were calculated. A comparative analysis of the results of using these two components under similar conditions was carried out, which made it possible to reveal the influence of the physicochemical properties of the combustible component on the efficiency of the working process organization. The results obtained can be used in the design of low-thrust engines operating on the kerosene–oxygen and ethanol–oxygen propellants.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


2017 ◽  
Vol 17 ◽  
pp. 245-252
Author(s):  
V. V. Somov

In carrying out an investigation into the explosion, among others, the investigative version of the use of a single-use reactive grenade launcher is being considered. The most common for criminal explosions are applied grenade launchers RPG-18, RPG-22, RPG-26. Their use is due to a number of such properties as small size and weight, which makes it possible to transfer them covertly, the range of the shot significantly exceeding the range of the hand grenade throw, the high detonating effect of the rocket grenade explosion. The single-use rocket launchers are generally of the same design. Their differences are in the features of the components construction and dimensional characteristics, which are given in the article. On the basis of expert practice, details ofgrenade launchers that remain at the site of the explosion and have the least damage are determined. These details are the objects of investigation of the explosion technical expertise. These objects include launchers of grenade launchers and rocket parts ofjet grenades. The design features of the launchers, their dimensional characteristics and marking symbols make it possible to determine their belonging to a specific type of jet grenade launchers. Missile parts of jet grenades differ in the form of the combustion chamber of the jet engine, nozzle, in the size ofthe outlet section of the nozzle, in the form and size of the stabilizerfeathers. To determine the belonging of the rocket part of the grenade to a specific type ofjet grenade launcher, it’s necessary to establish a set of structural features and dimensional characteristics. At considerable damage of the combustion chamber of the jet engine, as a rule, the nozzle block remains intact that allows to define diameter of critical section of a nozzle, and on it to establish type of the used single-use grenade launcher.


Sign in / Sign up

Export Citation Format

Share Document