scholarly journals Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation

2018 ◽  
Vol 11 (2) ◽  
pp. 239-278 ◽  
Author(s):  
Tomasz Komorowski ◽  
◽  
Łukasz Stȩpień ◽  
Author(s):  
M. N. Srinivas ◽  
G. Basava Kumar ◽  
V. Madhusudanan

The present research article constitutes Holling type II and IV diseased prey predator ecosystem and classified into two categories namely susceptible and infected predators.We show that the system has a unique positive solution. The deterministic and stochastic nature of the dynamics of the system is investigated. We check the existence of all possible steady states with local stability. By using Routh-Hurwitz criterion we showed that the positive equilibrium point $E_{7}$ is locally asymptotically stable if $x^{*} > \sqrt{m_{1}}$ .Moreover condition of the global stability of positive equilibrium point $E_{7}$ are also entrenched with help of Lyupunov theorem. Some Numerical simulations are carried out to illustrate our analytical findings.


Author(s):  
Xiaoming Fan ◽  
Zhigang Wang

AbstractAn SEIR epidemic model with constant immigration and random fluctuation around the endemic equilibrium is considered. As a special case, a deterministic system discussed by Li et al. will be incorporated into the stochastic version given by us. We carry out a detailed analysis on the asymptotic behavior of the stochastic model, also regarding of the basic reproduction number ℛ


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jiaju Zhang ◽  
M.A. Rajabpour

Abstract We investigate the Rényi entropy of the excited states produced by the current and its derivatives in the two-dimensional free massless non-compact bosonic theory, which is a two-dimensional conformal field theory. We also study the subsystem Schatten distance between these states. The two-dimensional free massless non-compact bosonic theory is the continuum limit of the finite periodic gapless harmonic chains with the local interactions. We identify the excited states produced by current and its derivatives in the massless bosonic theory as the single-particle excited states in the gapless harmonic chain. We calculate analytically the second Rényi entropy and the second Schatten distance in the massless bosonic theory. We then use the wave functions of the excited states and calculate the second Rényi entropy and the second Schatten distance in the gapless limit of the harmonic chain, which match perfectly with the analytical results in the massless bosonic theory. We verify that in the large momentum limit the single-particle state Rényi entropy takes a universal form. We also show that in the limit of large momenta and large momentum difference the subsystem Schatten distance takes a universal form but it is replaced by a new corrected form when the momentum difference is small. Finally we also comment on the mutual Rényi entropy of two disjoint intervals in the excited states of the two-dimensional free non-compact bosonic theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


Sign in / Sign up

Export Citation Format

Share Document