scholarly journals Approximate solutions to nonlinear factional order partial differential equations arising in ion-acoustic waves

2019 ◽  
Vol 4 (3) ◽  
pp. 721-739 ◽  
Author(s):  
Samia Bushnaq ◽  
◽  
Sajjad Ali ◽  
Kamal Shah ◽  
Muhammad Arif ◽  
...  
2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Elsayed M.E. Zayed ◽  
Reham M.A. Shohib ◽  
Mohamed E.M. Alngar

New extended generalized Kudryashov method is proposed in this paper for the first time. Many solitons and other solutions of three nonlinear partial differential equations (PDEs), namely, the (1+1)-dimensional improved perturbed nonlinear Schrödinger equation with anti-cubic nonlinearity, the (2+1)-dimensional Davey–Sterwatson (DS) equation and the (3+1)-dimensional modified Zakharov–Kuznetsov (mZK) equation of ion-acoustic waves in a magnetized plasma have been presented. Comparing our new results with the well-known results are given. Our results in this article emphasize that the used method gives a vast applicability for handling other nonlinear partial differential equations in mathematical physics.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1309
Author(s):  
P. R. Gordoa ◽  
A. Pickering

We consider the problem of the propagation of high-intensity acoustic waves in a bubble layer consisting of spherical bubbles of identical size with a uniform distribution. The mathematical model is a coupled system of partial differential equations for the acoustic pressure and the instantaneous radius of the bubbles consisting of the wave equation coupled with the Rayleigh–Plesset equation. We perform an analytic analysis based on the study of Lie symmetries for this system of equations, concentrating our attention on the traveling wave case. We then consider mappings of the resulting reductions onto equations defining elliptic functions, and special cases thereof, for example, solvable in terms of hyperbolic functions. In this way, we construct exact solutions of the system of partial differential equations under consideration. We believe this to be the first analytic study of this particular mathematical model.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yongjin Li ◽  
Kamal Shah

We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also provide error analysis and some test problems to demonstrate the established technique.


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


1992 ◽  
Vol 15 (4) ◽  
pp. 663-672
Author(s):  
Lucas Jódar

In this paper coupled implicit initial-boundary value systems of second order partial differential equations are considered. Given a finite domain and an admissible errorϵan analytic approximate solution whose error is upper bounded byϵin the given domain is constructed in terms of the data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244027
Author(s):  
Sidra Saleem ◽  
Malik Zawwar Hussain ◽  
Imran Aziz

The approximate solution of KdV-type partial differential equations of order seven is presented. The algorithm based on one-dimensional Haar wavelet collocation method is adapted for this purpose. One-dimensional Haar wavelet collocation method is verified on Lax equation, Sawada-Kotera-Ito equation and Kaup-Kuperschmidt equation of order seven. The approximated results are displayed by means of tables (consisting point wise errors and maximum absolute errors) to measure the accuracy and proficiency of the scheme in a few number of grid points. Moreover, the approximate solutions and exact solutions are compared graphically, that represent a close match between the two solutions and confirm the adequate behavior of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document