scholarly journals Fractional order modeling and analysis of dynamics of stem cell differentiation in complex network

2022 ◽  
Vol 7 (4) ◽  
pp. 5175-5198
Author(s):  
Ram Singh ◽  
◽  
Attiq U. Rehman ◽  
Mehedi Masud ◽  
Hesham A. Alhumyani ◽  
...  

<abstract><p>In this study, a mathematical model for the differentiation of stem cells is proposed to understand the dynamics of cell differentiation in a complex network. For this, myeloid cells, which are differentiated from stem cells, are introduced in this study. We introduce the threshold quantity $ \mathcal{R}_{0} $ to understand the population dynamics of stem cells. The local stability analysis of three equilibria, namely $ (i) $ free equilibrium points, $ (ii) $ absence of stem and progenitor cells, and $ (iii) $ endemic equilibrium points are investigated in this study. The model is first formulated in non-fractional order and after that converted into a fractional sense by utilizing the Atangana-Baleanu derivative in Caputo (ABC) sense in the form of a non-singular kernel. The model is solved by using numerical techniques. It is seen that the myeloid cell population significantly affects the stem cell population.</p></abstract>

2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2012 ◽  
Vol 287 (44) ◽  
pp. 36777-36791 ◽  
Author(s):  
Hiroaki Fujimori ◽  
Mima Shikanai ◽  
Hirobumi Teraoka ◽  
Mitsuko Masutani ◽  
Ken-ichi Yoshioka

Author(s):  
Silmi Mariya

The mammary gland contains adult stem cells that are capable of self-renewal.  This population plays an important role in the development of mammary gland and breast cancer pathogenesis. The studies of mammary stem cells are limited due to the difficulty to acquire and expand adult stem cell population in an undifferentiated state. In this study, we developed mammosphere cultures of nulliparous cynomolgus monkeys (Macaca fascicularis; Mf) as a culture system to enrich mammary stem cells. This species has similarity of mammary gland structure as humans including anatomy, developmental stages, and lobule profile of mammary gland. The use of stem cells from primate animals is essential to bridge the knowledge gaps resulting from stem cell research using rodents for clinical trials in human. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured as monolayer and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for mammary stem cells was evaluated using qPCR. Cells were further differentiated with 3D approaches to evaluate morphology and organoid budding. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. The 3D differentiation in matrigel allowed for organoid formation. Mammary gland stem cells have been successfully differentiated which characterized by CSN2 marker expression and differentiation regulators marker STAT5 and GATA3. The results indicate that mammospheres can be successfully developed derived from breast tissue of nulliparous Mf collected via surgical biopsy. As the mammosphere allows for enrichment of mammary stem cell population, the findings also suggest that a 3-dimensional system is efficient as in-vitro model to study mammary stem cells and a useful system to study mammary differentiation in regards to cancer prevention.


2020 ◽  
Vol 7 (3) ◽  
pp. 191848
Author(s):  
Yanli Wang ◽  
Wing-Cheong Lo ◽  
Ching-Shan Chou

Stem cells are important to generate all specialized tissues at an early life stage, and in some systems, they also have repair functions to replenish the adult tissues. Repeated cell divisions lead to the accumulation of molecular damage in stem cells, which are commonly recognized as drivers of ageing. In this paper, a novel model is proposed to integrate stem cell proliferation and differentiation with damage accumulation in the stem cell ageing process. A system of two structured PDEs is used to model the population densities of stem cells (including all multiple progenitors) and terminally differentiated (TD) cells. In this system, cell cycle progression and damage accumulation are modelled by continuous dynamics, and damage segregation between daughter cells is considered at each division. Analysis and numerical simulations are conducted to study the steady-state populations and stem cell damage distributions under different damage segregation strategies. Our simulations suggest that equal distribution of the damaging substance between stem cells in a symmetric renewal and less damage retention in stem cells in the asymmetric division are favourable strategies, which reduce the death rate of the stem cells and increase the TD cell populations. Moreover, asymmetric damage segregation in stem cells leads to less concentrated damage distribution in the stem cell population, which may be more robust to the stochastic changes in the damage. The feedback regulation from stem cells can reduce oscillations and population overshoot in the process, and improve the fitness of stem cells by increasing the percentage of cells with less damage in the stem cell population.


2020 ◽  
pp. 002203452096012
Author(s):  
X. Yuan ◽  
J. Chen ◽  
J.A. Grauer ◽  
Q. Xu ◽  
L.A. Van Brunt ◽  
...  

The most fundamental function of an epithelial tissue is to act as a barrier, regulating interactions between the external environment and the body. This barrier function typically requires a contiguous cell layer but since teeth penetrate the oral epithelium, a modified barrier has evolved, called the junctional epithelium (JE). In health, the JE attaches to the tooth, sealing the inside of the body against oral micro-organisms. Breakdown of the JE barrier results in periodontal ligament (PDL) disintegration, alveolar bone resorption, and ultimately tooth loss. Using lineage tracing and DNA pulse-chase analyses, we identified an anatomical location in the JE that supported both fast- and slow-cycling Wnt-responsive stem cells that contributed to self-renewal of the tissue. Stem cells produced daughter cells with an extraordinarily high rate of turnover that maintained JE integrity for 1.4 y in mice. Blocking cell proliferation via a chemotherapeutic agent 5-fluorouracil (5-Fu) eliminated fast-cycling stem cells, which caused JE degeneration, PDL destruction, and bone resorption. Upon removal of 5-Fu, slow-cycling stem cells regenerated both the structure and barrier function of the JE. Taken together, our studies identified a stem cell population in the JE and have potential clinical implications for prevention and treatment of periodontitis.


Sign in / Sign up

Export Citation Format

Share Document