scholarly journals Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination

2021 ◽  
Vol 18 (6) ◽  
pp. 9474-9495
Author(s):  
Han Ma ◽  
◽  
Qimin Zhang

<abstract><p>We consider a vaccination control into a age-structured susceptible-infective-recovered-susceptible (SIRS) model and study the global stability of the endemic equilibrium by the iterative method. The basic reproduction number $ R_0 $ is obtained. It is shown that if $ R_0 &lt; 1 $, then the disease-free equilibrium is globally asymptotically stable, if $ R_0 &gt; 1 $, then the disease-free and endemic equilibrium coexist simultaneously, and the global asymptotic stability of endemic equilibrium is also shown. Additionally, the Hamilton-Jacobi-Bellman (HJB) equation is given by employing the Bellman's principle of optimality. Through proving the existence of viscosity solution for HJB equation, we obtain the optimal vaccination control strategy. Finally, numerical simulations are performed to illustrate the corresponding analytical results.</p></abstract>

2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Mahmoud A. Ibrahim ◽  
Attila Dénes

AbstractWe present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number $${\mathscr {R}}_{0}$$ R 0 as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If $${\mathscr {R}}_0 < 1,$$ R 0 < 1 , then the disease-free periodic solution is globally asymptotically stable, while if $${\mathscr {R}}_0 > 1,$$ R 0 > 1 , then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850069 ◽  
Author(s):  
Xia Wang ◽  
Ying Zhang ◽  
Xinyu Song

In this paper, a susceptible-vaccinated-exposed-infectious-recovered epidemic model with waning immunity and continuous age structures in vaccinated, exposed and infectious classes has been formulated. By using the Fluctuation lemma and the approach of Lyapunov functionals, we establish a threshold dynamics completely determined by the basic reproduction number. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, and otherwise the endemic steady state is globally asymptotically stable.


2019 ◽  
Vol 1 (2) ◽  
pp. 125
Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
Nurwahidah Sari

Abstrak. Artike lini adalah penelitian teori dan terapan. Artikelini bertujuan untuk membahas mengenai model matematika SIRS untuk penyebaran Demam Berdarah Dengue. Data yang digunakanadalah data sekunder jumlah penderita penyakit Demam Berdarah Dengue dari Side pada tahun 2014. Pembahasan di mulai dari membangun model matematika SIRS penyakit Demam Berdarah Dengue, menentukan eksistensi model SIRS menggunakan fungsi Lyapunov, penentuan titik ekuilibrium, kemudian mencari analisis kestabilan titik ekuilibrium menggunakan fungsi Lyapunov, menentukan nilai bilangan reproduksi dasar , membuat simulasi model, dan menginterpretasikannya. Dalam artikel ini diperoleh model matematika SIRS untuk penyakit Demam Berdarah Dengue, eksistensi model SIRS, dua titik ekuilibrium bebas penyakit dan endemik dari model SIRS, kestabilan global keseimbangan bebas penyakit dan endemik dari model SIRS dengan nilai bilangan reproduksi dasar , ini menunjukkan bahwa penyakit Demam Berdarah Dengue berstatus epidemik.Kata Kunci: Model Matematika, Penyebaran Penyakit, Demam Berdarah Dengue, Model  SIRS, Fungsi LyapunovAbstract. This paper is theorethical and applied research. This paper aims to discus about SIRS mathematical models for the spread of dengue fever. The data used is a secondary data about the number of people with dengue fever disease from Side (2014). The discussion start from constructing SIRS models of dengue fever disease, determining the existence of SIRS models using Lyapunov function, determining equilibrium point, then looking for stability analysis of equilibrium point using Lyapunov function, determining reproduction number , making models simulation, and interpreting it. In this paper, we obtained mathemathical models of SIRS for dengue fever disease, existence of SIRS models, disease-free and endemic equilibrium points of SIRS models, global stability of disease-free and endemic equilibrium of SIRS models with basic reproduction number , it shows that dengue fever disease is epidemic status. , This shows that Dengue Hemorrhagic Fever is an epidemic.Keyword: Mathematical Model, Spread of Disease, Dengue Fever, SIRS Model, Lyapunov Function


Author(s):  
Hongquan Sun ◽  
Hong Li ◽  
Jin Li ◽  
Zhangsheng Zhu

In this paper, we propose and investigate an SIRS model with age structure and two delays. Both the infected and the recovered individuals have age structure, the infection rate (from the infective to the susceptible) and the immune loss rate (from the recovered to the susceptible) are related to two independent time delays, respectively. We prove that the proposed age structured SIRS model is well-posed by using the [Formula: see text]-semigroup theory. The basic reproduction number [Formula: see text] is given, and the unique endemic equilibrium exists when [Formula: see text], while the disease-free equilibrium always exists. A rigorous mathematical analysis for the stability of two equilibria is provided. The disease-free equilibrium is local asymptotically stable if [Formula: see text], and the endemic equilibrium is local asymptotically stable if [Formula: see text] and [Formula: see text]. Finally, we give numerical simulations to verify our results.


Author(s):  
Soufiane Bentout ◽  
Salih Djilali ◽  
Abdenasser Chekroun

We consider in this research an age-structured alcoholism model. The global behavior of the model is investigated. It is proved that the system has a threshold dynamics in terms of the basic reproduction number (BRN), where we obtained that alcohol-free equilibrium (AFE) is globally asymptotically stable (GAS) in the case [Formula: see text], but for [Formula: see text] we found that the system persists and the nontrivial equilibrium (EE) is GAS. Furthermore, the effects of the susceptible drinkers rate and the repulse rate of the recovers to alcoholics are investigated, which allow us to provide a proper strategy for reducing the spread of alcohol use in the studied populations. The obtained mathematical results are tested numerically next to its biological relevance.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Jing'an Cui ◽  
Zhanmin Wu ◽  
Xueyong Zhou

We consider aSVR-Bcholera model with imperfect vaccination. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. We calculate the certain threshold known as the control reproduction numberℛv. Ifℛv<1, we obtain sufficient conditions for the global asymptotic stability of the disease-free equilibrium; the diseases will be eliminated from the community. By comparison of arguments, it is proved that ifℛv>1, the disease persists and the unique endemic equilibrium is globally asymptotically stable, which is obtained by the second compound matrix techniques and autonomous convergence theorems. We perform sensitivity analysis ofℛvon the parameters in order to determine their relative importance to disease transmission and show that an imperfect vaccine is always beneficial in reducing disease spread within the community.


2011 ◽  
Vol 04 (04) ◽  
pp. 493-509 ◽  
Author(s):  
JINLIANG WANG ◽  
SHENGQIANG LIU ◽  
YASUHIRO TAKEUCHI

In this paper, we investigate the dynamical behavior of a class of periodic SVEIR epidemic model. Since the nonautonomous phenomenon often occurs as cyclic pattern, our model is then a periodic time-dependent system. It follows from persistence theory that the basic reproduction number is the threshold parameter above which the disease is uniformly persistent and below which disease-free periodic solution is globally asymptotically stable. The threshold dynamics extends the classic results for the corresponding autonomous model. Furthermore, we show that eradication policy on the basis of the basic reproduction number of the autonomous system may overestimate the infectious risk when the disease follows periodic behavior. The according simulation results are also given.


Sign in / Sign up

Export Citation Format

Share Document