scholarly journals Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field

2021 ◽  
Vol 19 (2) ◽  
pp. 1891-1908
Author(s):  
Jianhua Song ◽  
◽  
Lei Yuan ◽  

<abstract> <p>The segmentation and extraction of brain tissue in magnetic resonance imaging (MRI) is a meaningful task because it provides a diagnosis and treatment basis for observing brain tissue development, delineating lesions, and planning surgery. However, MRI images are often damaged by factors such as noise, low contrast and intensity brightness, which seriously affect the accuracy of segmentation. A non-local fuzzy c-means clustering framework incorporating the Markov random field for brain tissue segmentation is proposed in this paper. Firstly, according to the statistical characteristics that MRF can effectively describe the local spatial correlation of an image, a new distance metric with neighborhood constraints is constructed by combining probabilistic statistical information. Secondly, a non-local regularization term is integrated into the objective function to utilize the global structure feature of the image, so that both the local and global information of the image can be taken into account. In addition, a linear model of inhomogeneous intensity is also built to estimate the bias field in brain MRI, which has achieved the goal of overcoming the intensity inhomogeneity. The proposed model fully considers the randomness and fuzziness in the image segmentation problem, and obtains the prior knowledge of the image reasonably, which reduces the influence of low contrast in the MRI images. Then the experimental results demonstrate that the proposed method can eliminate the noise and intensity inhomogeneity of the MRI image and effectively improve the image segmentation accuracy.</p> </abstract>

In current years, the grouping has become well identified for numerous investigators due to several application fields like communication, wireless networking, and biomedical domain and so on. So, much different research has already been made by the investigators to progress an improved system for grouping. One of the familiar investigations is an optimization that has been efficiently applied for grouping. In this paper, propose a method of Hybrid Bee Colony and Cuckoo Search (HBCCS) based centroid initialization for fuzzy c-means clustering (FCM) in bio-medical image segmentation (HBCC-KFCM-BIM). For MRI brain tissue segmentation, KFCM is most preferable technique because of its performance. The major limitation of the conventional KFCM is random centroids initialization because it leads to rising the execution time to reach the best resolution. In order to accelerate the segmentation process, HBCCS is used to adjust the centroids of required clusters. The quantitative measures of results were compared using the metrics are the number of iterations and processing time. The number of iterations and processing of HBCC-KFCM-BIM method take minimum value while compared to conventional KFCM. The HBCC-KFCM-BIM method is very efficient and faster than conventional KFCM for brain tissue segmentation.


1997 ◽  
Vol 30 (7) ◽  
pp. 269-274
Author(s):  
R. Boussarsar ◽  
P. Martin ◽  
R. Lecordier ◽  
M. Ketata

Sign in / Sign up

Export Citation Format

Share Document