scholarly journals The role of Plant Growth Promoting Bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat

2017 ◽  
Vol 3 (3) ◽  
pp. 413-434 ◽  
Author(s):  
Nilde Antonella Di Benedetto ◽  
◽  
Maria Rosaria Corbo ◽  
Daniela Campaniello ◽  
Mariagrazia Pia Cataldi ◽  
...  
2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


Author(s):  
Khushboo Chaudhary ◽  
Suphiya Khan ◽  
Pankaj Kumar Saraswat

The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


2021 ◽  
Author(s):  
Claudia Petrillo ◽  
Stefany Castaldi ◽  
Mariamichela Lanzilli ◽  
Matteo Selci ◽  
Angelina Cordone ◽  
...  

Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of chemicals for crop production is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests, known as Plant-Growth-Promoting Bacteria (PGPB). The aim of the present study was to isolate and characterize PGPB from salt-pans sand samples able to ameliorate plant fitness. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. We have isolated and screened in vitro a total of 20 halophilic spore-forming bacteria for phyto-beneficial traits and compared the results with two rhizosphere Bacilli recently isolated from the rhizosphere of the same collection site and recently characterized as potential biocontrol agents. Whole-genome analysis on five selected halophilic strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes potentially involved in plant growth promotion and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the absence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vivo results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6076 ◽  
Author(s):  
Hadia -e- Fatima ◽  
Ambreen Ahmed

Bacteria are tiny organisms which are ubiquitously found in the environment. These microscopic living bodies are responsible for the flow of nutrients in biogeochemical cycles and fertility imparted to the soil. Release of excessive chromium in agricultural soils due to rapid growth of industries may result in minimizing the fertility of soil in future, which will lead to reduction in crop production. Plant growth promoting bacteria (PGPB) are beneficial to the environment, some of which can tolerate chromium and protect plants against heavy metal stress. The current study aims to identify such chromium-tolerant auxin-producing rhizobacteria and to investigate their inoculation effects on the growth characteristics of Lens culinaris in chromium polluted soils by using two different chromium salts i.e., K2Cr2O7 and K2CrO4 in varying concentrations (0, 50, 100, 200, 400 and 500 µgml−1). The results revealed that Bacillus species are efficient in significantly reducing the deleterious effects of Cr. These effective bacterial strains were able to stimulate the growth of metal effected plants of Lens culinaris which were grown in chromium contaminated environment. Therefore, these plant growth promoting rhizobacteria PGPRs, having both auxin production potential and chromium-resistance ability, are considered as efficient micro-factories against chromium pollution.


Sign in / Sign up

Export Citation Format

Share Document