scholarly journals Analyses of alpha-alpha elastic scattering data in the energy range 140 - 280 MeV

2017 ◽  
Vol 70 (2) ◽  
pp. 141-149
Author(s):  
Zuhair F. Shehadeh
Author(s):  
Luiz Carlos Chamon ◽  
Leandro Romero Gasques ◽  
Juan Carlos Zamora Cardona

Abstract The phenomenological strengths of the real part of the optical potential, obtained from elastic scattering data analyses within the optical model approach, present significant energy-dependence. This behavior has been associated to the intrinsic energy-dependence of the effective nucleon-nucleon interaction. However, in earlier works, we proposed that at least part of this dependence can arise from the effect of couplings to inelastic states of the nuclei. In order to deepen this study, in this paper we present extensive data analyses for the elastic scattering and inelastic excitation of 111 states of 208Pb, for the 4He + 208Pb system in a wide energy range. With the purpose of comparison, the theoretical cross sections are obtained in different approaches for the imaginary part of the potential, and within both contexts: optical model (distorted wave Born approximation) and coupled-channel calculations.


2016 ◽  
Vol 94 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Z.F. Shehadeh

The differential and reaction cross sections for alpha–alpha elastic scattering at energies ranging from 50 to 120 MeV (lab. system) have been clearly explained for the first time, by using a new optical potential type. This potential, which is different from all other proposed potentials, is composed of two real parts: one is an attractive squared Woods–Saxon and the other is a repulsive core of the Woods–Saxon form in addition to a surface Woods–Saxon form for the imaginary part. The nature of the real part has been determined from available phase shifts through using inverse scattering theory for the identical particles at a fixed energy, adopting the framework of the Schrödinger equation. It is found that the repulsive real part is essential for improving the fit to the measured elastic differential cross sections, and in explaining the kink that appears at r < 1.0 fm in the shape of the real part of the potential. Using this new potential, our calculated reaction cross sections are in reasonable agreement with the ones reported by both Darriulat et al. (Phys. Rev. 137, B315 (1965). doi:10.1103/PhysRev.137.B315) and Brown and Tang (Nucl. Phys. A, 170, 225 (1971). doi:10.1016/0375-9474(71)90633-6 ).


2012 ◽  
Vol 27 (30) ◽  
pp. 1250175 ◽  
Author(s):  
F. NEMES ◽  
T. CSÖRGŐ

Final results of a detailed analysis of p+p elastic scattering data are presented, utilizing the quark–diquark model of protons in a form proposed by Bialas and Bzdak. The differential cross-section of elastic proton–proton collisions is analyzed in a detailed and systematic manner at small momentum transfers, starting from the energy range of CERN ISR at [Formula: see text], including also recent TOTEM data at the present LHC energies at [Formula: see text]. These studies confirm the picture that the size of proton increases systematically with increasing energies, while the size of the constituent quarks and diquarks remains approximately independent of (or only increases slightly with) the colliding energy. The detailed analysis indicates correlations between model parameters and also indicates an increasing role of shadowing at LHC energies. Within the investigated class of models, a simple and model-independent phenomenological relation was discovered that connects the total p+p scattering cross-section to the effective quark, diquark size and their average separation. Our best fits indicate that the relative error of this phenomenological relation is 10–15% in the considered energy range.


1992 ◽  
Vol 07 (26) ◽  
pp. 2415-2421 ◽  
Author(s):  
A. P. CONTOGOURIS ◽  
F. LEBESSIS

First a unitarization procedure for an amplitude with the asymptotic behavior of the Lipatov Pomeron is presented; it amounts to its iteration along the s-channel. Next, based on this procedure, a specific model is considered and applied to the description of elastic scattering data at very high energies; it is shown that it leads to a fair description of them.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Marzhan Nassurlla ◽  
N. Burtebayev ◽  
B. K. Karakozov ◽  
S. B. Sakuta ◽  
I. Boztosun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document