scholarly journals Conduit and fracture flow characteristics of Pınarbaşı spring, Central Taurus Region, Seydişehir, Turkey

2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Mehmet Çelik ◽  
Süleyman Selim Çallı

This study was conducted to investigate the flow and storage mechanisms of a karst aquifer located at the central Taurus Mountains, Turkey. As the biggest discharge point of the aquifer system, the flow characteristics are investigated at Pinarbaşi spring by using recession and time-series analyses. Continuous water level measurements are taken from the spring and are converted to flow rate by using a rating curve. The spring flows for 7 months (December 2014 – July 2015) and dries up for the rest of the year. Six individual recession periods are investigated and analyzed in the discharge time series. The recession coefficients (between 0.029 day-1 and 0.695 day-1) show that the flow within the aquifer system is mainly controlled by large open conduit and partly fracture porosity. The peak discharge is measured as 7.08 m3/s, and the maximum storage within the aquifer is calculated as 3.15 million m3. The continuous discharge data of the spring were evaluated combined with daily rainfall, temperature, electrical conductivity, and amount of suspended sediment in the water. Also a dye-tracing test was also applied to obtain the recharge-discharge relationship and porosity type of the aquifer system. Statistical tests on discharge hydrograph and tracer test showed that the memory of the karst aquifer was found to be about 3 days in the DJF period and about 15 days in the MAM period. The average elevation of the recharge area of the spring was determined to be 1,490 m by using stable isotope data of snow samples and was validated by dye tracer test made via the swallow hole in the recharge area. The total discharge for the year 2015 is estimated at 16.2 million m3 that approximately 25% of the total discharge is caused by snowmelt.

2020 ◽  
Vol 49 (1) ◽  
Author(s):  
Metka Petrič ◽  
Nataša Ravbar ◽  
Luca Zini ◽  
Chiara Calligaris ◽  
Riccardo Corazzi ◽  
...  

The new railway line between Divača and Koper/Capodistria in south-western Slovenia is being built, a part of which crosses the southern outskirts of the Classical Karst plateaux. It will run through two tunnels, the northern tunnel T1 (6.7 km long) and the southern T2 (6 km long), which partially cross karst aquifer system. A multi-tracer test with injections of fluorescent dyes uranine and naphthionate, bypassing the karst vadose zone, was carried out to define the directions and dynamics of the underground water flow. The main goals were better understanding of the complex hydrogeological conditions in the area and assessment of possible environmental impacts on the nearby water sources. With tracing of uranine injected into a nearby cave stream, the direction of flow from the northern T1 tunnel mainly towards the Reka-Timavo aquifer system and further towards the Timava/Timavo springs was proved. The peak velocities, as determined from the peaks of the tracer breakthrough curves, range from 29 m/h to 36 m/h. Through the wider and well-connected conduits of the Reka-Timavo system, the peak velocities can reach up to 88 m/h. The recovery of uranine in an intermediate cave, i.e., Jama 1 v Kanjaducah, amounted to approximately 74 %. The northern section of the southern T2 tunnel is a part of a wider bifurcation zone between the Osapska Reka and the Boljunec/Bagnoli springs, where peak flow velocities between 10 and 13 m/h have been determined by tracing of naphthionate injected into a borehole located in the line of the planned tunnel. It has been estimated that about 25 % of the injected naphthionate flew out through the Osapska Reka spring and about 5 % through the Boljunec/ Bagnoli springs. Based on this research, proper monitoring of any potential negative impacts of the new railway line will be made possible. The study presents an approach to better planning of hazard control of traffic routes in complex and highly karstified rock settings.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Çağdaş Sağır ◽  
Bedri Kurtuluş ◽  
Moumtaz Razack

Karst aquifers have been an important research topic for hydrologists for years. Due to their high storage capacity, karst aquifers are an important source of water for the environment. On the other hand, it is safety-critical because of its role in floods. Mugla Karst Aquifer (SW, Turkey) is the only major water-bearing formation in the close environs of Mugla city. Flooding in the wet season occurs every year in the recharge plains. The aquifer discharges by the seaside springs in the Akyaka district which is the main touristic point of interest in the area. Non-porous irregular internal structures make the karsts more difficult to study. Therefore, many different methodologies have been developed over the years. In this study, unit hydrograph analysis, correlation and spectral analyses were applied on the rainfall and spring water-level time series data. Although advanced karst formations can be seen on the surface like the sinkholes, it has been revealed that the interior structure is not highly karstified. 100–130 days of regulation time was found. This shows that the Mugla Karst has quite inertial behavior. Yet, the storage of the aquifer system is quite high, and the late infiltration effect caused by alluvium plains was detected. This characterization of the hydrodynamic properties of the Mugla karst system represents an important step to consider the rational exploitation of its water resources in the near future.


2020 ◽  
Author(s):  
Nikolaos Karalemas ◽  
Christos Filis ◽  
Emmanuel Skourtsos ◽  
Haralambos Kranis ◽  
Stylianos Lozios ◽  
...  

<p>Three main aquifer systems developed on Kythira Island (Greece) include (Pagounis, 1981; Pagounis & Gertsos, 1984, Danamos, 1991; Koumantakis et al., 2006; Filis et al., 2019):</p><ul><li>The porous aquifer system in Neogene and Quaternary formations.</li> <li>The karst aquifer system in the carbonate formations of the Pindos and Tripolis Units.</li> <li>The aquifer system (both shallow and deep) in the fractured hard rocks mainly of the Phyllites – Quartzites Unit.</li> </ul><p>The main discharge of the aquifer systems takes place in coastal and submarine brackish springs around the island, except for its northern part where the Phyllites – Quartzites Unit outcrops and its central part where springs of small capacity discharge the carbonate formations of the Pindos Unit.</p><p>Precipitation is the direct recharge of the three aforementioned aquifer systems while indirectly lateral discharge occurs in places between adjacent and tangential aquifer systems and from the streams runoff as well.</p><p>In the area of Mylopotamos village four springs discharge the karst aquifer of the Pindos Unit within the channel of Kako Laghadi stream forming downstream the known “Neraida or Fonissa waterfall”. Moreover, along the dell of Kako Laghadi stream 22 watermills were built, among the plane trees and the ivy.</p><p>The most significant of the aforementioned springs is the Kamari spring (+282.28 meters a.s.l.) which emerge at the thrust fault between the overlying permeable carbonates and the underlying impermeable flysch formation of the Pindos Unit. The discharge of the Kamari spring presents annual fluctuation which varies from app. 45-50 m<sup>3</sup>/h (during winter) to total recession (during summer), due to restriction of the precipitation and the prolonged drought and overpumping of its recharge area mainly with boreholes.</p><p>The inactive municipal borehole of Mylopotamos village (+299.15 meters a.s.l.) is located app. 310 meters SSE of the Kamari spring within its recharge area (karst aquifer of the Pindos Unit). This borehole of a total depth of 40 meters penetrates carbonates of the Pindos Unit which thickness exceeds 100 meters in that area. Monthly measurements of the Kamari spring discharge and the water table head in the inactive borehole demonstrate clear and direct hydraulic correlation between them. The Kamari spring presents outflow only in the case when the water level head of the borehole exceeds +282.28 meters. This means that the water level head in the borehole should not exceed 16.87 meters from the earth surface. Taking into account all the aforementioned, the Kamari spring is designated as an overflow spring.</p><p>Finally, microbiological analysis from the Kamari spring showed qualitative degradation, due to human activities in the wider area (Pagounis, 1981; Filis et al., 2019).</p>


2001 ◽  
Vol 3 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Hoi Yeung

Service reservoirs were built to provide the dual function of balancing supply with demand and provision of adequate head to maintain pressure throughout the distribution network. Changing demographics in the UK and reducing leakage have led to significant increases in water age and hence increased risk of poor water quality. Computational fluid mechanics has been used to study the behaviour of a range of service reservoirs with a rectangular plan form. Detailed analysis of flow distribution and water age suggests that tanks with horizontal inlets are better mixed when compared with vertical top water level inlets. With increasing length to width ratio, the flow characteristics of tanks with vertical inlets increasingly resemble plug flow. A new multi-channel reactor model was developed to model the recirculations in service reservoirs. This simple model can be used to characterise the flow characteristics of service reservoirs from tracer test results.


2021 ◽  
Author(s):  
Andre C. Kalia

<p>Landslide activity is an important information for landslide hazard assessment. However, an information gap regarding up to date landslide activity is often present. Advanced differential interferometric SAR processing techniques (A-DInSAR), e.g. Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) are able to measure surface displacements with high precision, large spatial coverage and high spatial sampling density. Although the huge amount of measurement points is clearly an improvement, the practical usage is mainly based on visual interpretation. This is time-consuming, subjective and error prone due to e.g. outliers. The motivation of this work is to increase the automatization with respect to the information extraction regarding landslide activity.</p><p>This study focuses on the spatial density of multiple PSI/SBAS results and a post-processing workflow to semi-automatically detect active landslides. The proposed detection of active landslides is based on the detection of Active Deformation Areas (ADA) and a subsequent classification of the time series. The detection of ADA consists of a filtering of the A-DInSAR data, a velocity threshold and a spatial clustering algorithm (Barra et al., 2017). The classification of the A-DInSAR time series uses a conditional sequence of statistical tests to classify the time series into a-priori defined deformation patterns (Berti et al., 2013). Field investigations and thematic data verify the plausibility of the results. Subsequently the classification results are combined to provide a layer consisting of ADA including information regarding the deformation pattern through time.</p>


2021 ◽  
Author(s):  
Christoph Klingler ◽  
Mathew Herrnegger ◽  
Frederik Kratzert ◽  
Karsten Schulz

<p>Open large-sample datasets are important for various reasons: i) they enable large-sample analyses, ii) they democratize access to data, iii) they enable large-sample comparative studies and foster reproducibility, and iv) they are a key driver for recent developments of machine-learning based modelling approaches.</p><p>Recently, various large-sample datasets have been released (e.g. different country-specific CAMELS datasets), however, all of them contain only data of individual catchments distributed across entire countries and not connected river networks.</p><p>Here, we present LamaH, a new dataset covering all of Austria and the foreign upstream areas of the Danube, spanning a total of 170.000 km² in 9 different countries with discharge observations for 882 gauges. The dataset also includes 15 different meteorological time series, derived from ERA5-Land, for two different basin delineations: First, corresponding to the entire upstream area of a particular gauge, and second, corresponding only to the area between a particular gauge and its upstream gauges. The time series data for both, meteorological and discharge data, is included in hourly and daily resolution and covers a period of over 35 years (with some exceptions in discharge data for a couple of gauges).</p><p>Sticking closely to the CAMELS datasets, LamaH also contains more than 60 catchment attributes, derived for both types of basin delineations. The attributes include climatic, hydrological and vegetation indices, land cover information, as well as soil, geological and topographical properties. Additionally, the runoff gauges are classified by over 20 different attributes, including information about human impact and indicators for data quality and completeness. Lastly, LamaH also contains attributes for the river network itself, like gauge topology, stream length and the slope between two sequential gauges.</p><p>Given the scope of LamaH, we hope that this dataset will serve as a solid database for further investigations in various tasks of hydrology. The extent of data combined with the interconnected river network and the high temporal resolution of the time series might reveal deeper insights into water transfer and storage with appropriate methods of modelling.</p>


2011 ◽  
Vol 4 (1) ◽  
pp. 71-97 ◽  
Author(s):  
A. K. Rennermalm ◽  
L. C. Smith ◽  
V. W. Chu ◽  
R. R. Forster ◽  
J. E. Box ◽  
...  

Abstract. Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river water level and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 min temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water level and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, which revealed that the greatest discharge data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Data will periodically be extended, and are available in Open Access at doi:10.1594/PANGAEA.762818.


Sign in / Sign up

Export Citation Format

Share Document