scholarly journals An X-ray diffraction study of corrosion products from low carbon steel

2003 ◽  
Vol 39 (Extra) ◽  
pp. 28-31 ◽  
Author(s):  
A. L. Morales
2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2021 ◽  
Vol 68 (5) ◽  
pp. 457-463
Author(s):  
Hongyu Liu ◽  
Yingxue Teng ◽  
Jing Guo ◽  
Qinghe Xiao ◽  
Miao Wang ◽  
...  

Purpose This paper aims to explore the transformation process and transformation mechanism of carbon steel under the marine environment. Design/methodology/approach In this paper, the transformation and rust layers corrosion products on 0Cu2Cr carbon steel with different cycles coupon test was investigated and deeply explored by scanning electron microscope, energy dispersive spectrometer, X-ray diffraction. Findings The results showed that the thickness of rust layers grew from 71.83 µm to 533.7 µm with increasing duration of corrosion. The initial corrosion product was γ-FeOOH, then part of the γ-FeOOH continued growing, and under the capillary action, the other part of the γ-FeOOH transformed to α-FeOOH. Originality/value To the best of the authors’ knowledge, this paper puts forward for the first time a new viewpoint of the development of corrosion products of low-carbon steel in two ways. This discovery provides a new idea for the future development of steel for marine engineering.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
E. Hamzah ◽  
C. L. Khohr ◽  
Ahmad Abdolahi ◽  
Z. Ibrahim

In this work, the iron bacteria were cultured and inoculated into the cooling water before immersion, and low carbon steel coupons were immersed for one month. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated using scanning electron microscopy (SEM), x-ray diffraction spectroscopy (XRD) and weight loss methods. SEM results showed that large amounts of corrosion products and heterogeneous biofilm layer were formed on the coupon surface. SEM also revealed the uniform-pitting corrosion on the steel surface due to bacteria colonization. XRD results show that the main constituents present in corrosion product are composed of iron oxides and iron hydroxides. 


2006 ◽  
Vol 514-516 ◽  
pp. 554-558 ◽  
Author(s):  
Mosbah Zidani ◽  
Zakaria Boumerzoug ◽  
Thierry Baudin ◽  
Richard Penelle

The effect of cold wire drawing on texture of industrial low carbon steel wire was investigated. On the other hand, the mechanism of recrystallization of drawn-wire was studied during different isothermal annealing below 723 °C. The structural evolution of wire was studied by optical microscopy, SEM, EBSD and X-Ray diffraction. From this study, a fiber texture was observed in deformed wire. However, a recrystallization reaction occurs after critical temperature during annealing.


2007 ◽  
Vol 539-543 ◽  
pp. 3436-3441 ◽  
Author(s):  
H.F.G. Abreu ◽  
Sergio S.M. Tavares ◽  
S.S. Carvalho ◽  
T.H.T. Eduardo ◽  
Antonia Daniele S. Bruno ◽  
...  

Crystallographic macrotexture of pure niobium cold rolled to 30, 60, 80 and 90% reduction was analyzed by X-ray diffraction and compared with low carbon steel texture. Annealed samples from 800oC, to 1200oC were investigated by X-ray diffraction and electron back scattering diffraction (EBSD). The texture of cold rolled polycrystalline niobium is characterized by a component {001}<110> that increases in intensity with the cold work percentage. After annealing, the component {001}<110> spreads out about 20o.


2017 ◽  
Vol 905 ◽  
pp. 157-164 ◽  
Author(s):  
Yujiro Hayashi ◽  
Daigo Setoyama ◽  
Yoshiki Seno

The grain-resolved residual stress (type II) in commercial-quality low carbon steel was observed using scanning three-dimensional X-ray diffraction (3DXRD) microscopy. In this method, grain orientations and lattice parameters are mapped using a monochromatic high-energy X-ray microbeam and 3DXRD-based polycrystalline indexing. Defining the reference lattice parameter a0 as the average value in the entire field of view, grain orientations and lattice parameters are converted into stress tensors, yielding a grain-resolved stress tensor map. The effectiveness of the scanning 3DXRD method was demonstrated by evaluating the residual stress in a cold-rolled low carbon steel sheet using a 50 keV microbeam at SPring-8. The area of the cross-sectional sample was 1×1 mm2, which was sufficiently larger than the grain size of about 20 μm. To produce a two-dimensional map of a circular region with a diameter of 160 μm at a pixel size of 1×1 μm2, the measurement time was about 1 h. From the stress tensor map, differences in residual stress of about 150–200 MPa between some neighboring grains were observed.


Sign in / Sign up

Export Citation Format

Share Document