scholarly journals Feeding habits and population aspects of the spotted goatfish, Pseudupeneus maculatus (Perciformes: Mullidae), on the continental shelf of northeast Brazil

2020 ◽  
Vol 84 (2) ◽  
Author(s):  
Andrey Soares ◽  
Alex Souza Lira ◽  
Júlio Guazzelli Gonzalez ◽  
Leandro Nolé Eduardo ◽  
Flávia Lucena-Frédou ◽  
...  

This study provides information about the feeding habits, population aspects and spatial distribution of the spot­ted goatfish, Pseudupeneus maculatus, along the coast of the tropical Brazilian continental shelf. Distribution patterns are described using length frequencies and catch rates. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), along with stomach contents, were analysed to determine the diet of the spotted goatfish. Multivariate analysis and numerical indicators of the diet, such as numerical frequency, frequency of occurrence and weight percentage, were computed to evaluate the diet composition. The mean trophic position was defined using both stable isotope ratios and stomach content analysis. The length at first maturity for the species was determined as 13.7 cm. A slight pattern in size distribution was observed, with mean size increasing with depth along the shelf. The diet was mainly composed of crustaceans, teleosts and Polychaeta. No clear dietary difference was found between habitat types, water depth or latitude. Both trophic positions estimated by stable isotopes and stomach contents analysis ranged between levels 3 and 4. P. Maculatus was found to be feeding on many rare and infrequent prey items, classifying it as a generalist zoobenthivorous predator, probably due to its efficient search strategy.

2018 ◽  
Vol 75 (6) ◽  
pp. 977-986 ◽  
Author(s):  
Ana Carolina Pizzochero ◽  
Loïc N. Michel ◽  
Simon R. Chenery ◽  
Ian D. McCarthy ◽  
Marcelo Vianna ◽  
...  

The whitemouth croaker, Micropogonias furnieri, is a long-lived fish of high commercial importance in the western Atlantic Ocean. Here, we used stable isotope ratios of carbon, sulfur, and nitrogen and isotopic niche metrics (SIBER) to study feeding habits and track habitat use by whitemouth croakers in Guanabara Bay, an estuary in Rio de Janeiro state, Brazil. Our results highlighted size-related habitat segregation, with small juvenile fishes (<30 cm) residing mostly inside estuaries and large adult fishes (>60 cm) feeding mainly in Continental Shelf waters. Medium adult fishes (30–60 cm) appear to feed in multiple coastal and Continental Shelf habitats. Moreover, their feeding ecology showed strong temporal differences, linked with seasonal and, to a lesser extent, interannual variation in oceanographic features of the ecosystem in which they live. Overall, these differences in ecological features suggest that (1) adult and juvenile whitemouth croakers should be treated as different components of the food web and (2) the conservation of these habitats should be prioritized to better manage and sustain the coastal fisheries in Guanabara Bay.


Author(s):  
R.I. Ruiz-Cooley ◽  
Unai Markaida ◽  
D. Gendron ◽  
S. Aguíñiga

Stomach contents and carbon (C) and nitrogen (N) stable isotope analysis were used to evaluate trophic relationships of jumbo squid, Dosidicus gigas. Buccal masses, beaks and stomach contents of large and medium maturing-sized jumbo squid and muscle from its main prey, the myctophid Benthosema panamense, were collected in the Gulf of California, Mexico during 1996, 1997 and 1999. Both the quantified C and N-isotope ratios in muscle, and stomach content analysis revealed that larger-sized maturing squid showed a higher trophic position than medium-sized individuals. However, a discrepancy between stomach contents versus stable isotope analyses was found in evaluating trophic relationships. Simple dilution models as a function of growth were used to estimate the C and N renewal dietary shift for jumbo squid. Estimates of the initial C and N pools in D. gigas with an initial age of 70 days and 210 days indicated isotopic shifts of 32% after a threefold biomass increase and 25% after a fourfold biomass increase, respectively. Additionally, beak samples of jumbo squid were evaluated as an alternative tissue to estimate squid trophic position using stable isotopes. The results showed a significant correlation between stable isotope ratios from muscle and beak samples. Muscle isotope values were higher than beak by 1% and 4% for δ13C and δ15N respectively. A test with jumbo squid beaks collected from a stomach of a stranded sperm whale confirmed the viability of this method.


2021 ◽  
Author(s):  
◽  
Charlotte Mortimer

<p>Marine communities in the Anthropocene are changing rapidly with potentially severe consequences for ecosystem functioning. Recently, there has been increased interest in the ecological role of sponges, particularly on coral reefs, driven by evidence that sponges may be less affected by this period of environmental change than other benthic organisms. The Sampela reef system in the Wakatobi Marine National Park, Indonesia, is an example of a reef that has shifted to sponge dominance following a decline in hard corals and an increase in sponge density. Previous research suggests that the Sampela reef system may support a greater abundance of spongivorous fishes relative to surrounding reefs, however, uncertainties remain regarding spongivore identity and predated sponges. In addition, little is known about how shifts towards sponge dominance affect the trophic structure of reefs. The primary aim of my thesis was to investigate sponge trophic interactions to gain insight into the way sponge-dominated reefs of the future might function. This information is essential to predict the broader functional consequences of increasing sponge dominance on reefs in the Anthropocene.   In my first data chapter, I measured the functional impact of spongivorous fishes by quantifying sponge biomass consumption on Wakatobi reefs. Video analysis identified 33 species from 10 families of reef fish grazing on Xestospongia spp., although 95% of bites were taken by only 11 species. Gut content analysis indicated that Pygoplites diacanthus and Pomacanthus imperator were obligate spongivores and Pomacanthus xanthometopon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. In situ feeding observations revealed that sponges from the family Petrosiidae are preferred by P. diacanthus and Z. cornutus. Spongivores were estimated to consume 46.6 ± 18.3 g sponge 1000 m- 2 of reef day-1 and P. diacanthus had the greatest predatory impact on sponges. While estimates provided here are conservative and likely underestimate the true magnitude of spongivory on Indo-Pacific coral reefs, this chapter provides the first known estimate of reef wide sponge biomass consumption. Comparisons with published data estimating coral consumption by Chaetodontids in the Pacific suggests that biomass transferred through both pathways is similar in magnitude. Hence spongivory is an important, yet overlooked, trophic pathway on Indo-Pacific reefs.  In my second data chapter, I developed genetic methods to identify sponges from the stomach contents of spongivorous angelfishes sampled in my first chapter. A range of primers and associated predator-blocking primers targeting the 18S rDNA gene were designed and tested on extracts of sponge and spongivore DNA. Sequences were successfully amplified from 14 sponges spanning 6 orders of Porifera, with the majority of samples identified belonging to the order Haplosclerida. This study is the first to successfully sequence sponges from the gut contents of spongivorous fishes. Sequence data indicated that Pygoplites diacanthus consumed sponges with considerable chemical defences and exhibited significant dietary plasticity within the Porifera phylum, similar to observations of angelfishes in the Caribbean and the eastern Pacific.  In my third data chapter, I used stable isotope analysis to investigate differences in consumer niche widths and trophic diversity on the sponge-dominated Sampela reef system in comparison to an adjacent, higher quality reef. I measured the stable isotope ratios of coral reef fish representing different functional feeding groups, prey items and basal carbon sources at both sites. I used isotope data to calculate the trophic position and isotopic niches of each species and performed interspecific and inter-site comparisons. The fish assemblage had a significantly lower mean trophic position at the sponge-dominated site and the majority of species had wider isotopic niches, in accordance with optimal foraging theory which supports expansion in niche widths when per capita prey is low. The fish assemblage sampled at the sponge-dominated site used a significantly lower range of resources, had lower trophic diversity and obtained more carbon from benthic production than fish from the higher quality reef site. Results indicate a simpler trophic structure at the sponge-dominated site characterised by fish with more similar diets. Whilst trophic niche expansion may facilitate population survival in the short term, it can be expected to lead to intensified competition for increasingly scarce resources.  In my final data chapter, I investigated niche partitioning and organic matter contributions to co-occurring temperate sponges. I sampled the stable isotope ratios of five abundant sponge species at 10 m and 30 m at two sites at opposing ends of Doubtful Sound, Fiordland. I also used an ROV to opportunistically sample sponges at depths >50 m and measured stable isotope ratios of picoplankton (</p>


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ashley Ehrman ◽  
Carie Hoover ◽  
Carolina Giraldo ◽  
Shannon A. MacPhee ◽  
Jasmine Brewster ◽  
...  

Abstract Objectives Existing information on Arctic marine food web structure is fragmented. Integrating data across research programs is an important strategy for building a baseline understanding of food web structure and function in many Arctic regions. Naturally-occurring stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) measured directly in the tissues of organisms are a commonly-employed method for estimating food web structure. The objective of the current dataset was to synthesize disparate δ15N, and secondarily δ13C, data in the Canadian Beaufort continental shelf region relevant to trophic and ecological studies at the local and pan-Arctic scales. Data description The dataset presented here contains nitrogen and carbon stable isotope ratios (δ15N, δ13C) measured in marine organisms from the Canadian Beaufort continental shelf region between 1983 and 2013, gathered from 27 published and unpublished sources with associated sampling metadata. A total of 1077 entries were collected, summarizing 8859 individual organisms/samples representing 333 taxa across the Arctic food web, from top marine mammal predators to primary producers.


2005 ◽  
Vol 62 (5) ◽  
pp. 1119-1129 ◽  
Author(s):  
David W Garton ◽  
Christopher D Payne ◽  
Joseph P Montoya

In this study, the trophic position and food-web impacts of invading zebra mussels (Dreissena polymorpha) were investigated by sampling mussels, seston (= phytoplankton), macrophytes, zooplankton, and surficial sediment in two small inland lakes (1999–2002) and similarly in western Lake Erie (1999 only). Tissues from quagga mussels (Dreissena bugensis) from Lake Erie were also analyzed. Stable-isotope ratios (15N/14N and 13C/12C) were used to identify likely food sources and estimate relative trophic position. For Lake Erie, stable-isotope ratios indicated no diet differences between the two mussel species. For all lakes, zooplankton δ13C was indicative of phytoplanktivory. The 13C stable isotope ratios indicated that seston comprised ~50% of food sources for mussels in Lake Erie, but 73%–97% and 52%–100% of the diet of mussel populations in Lake Wawasee and Clark Lake, respectively. Stable nitrogen isotope ratios placed zooplankton at trophic levels equal to or higher than those of mussels in seven of eight comparisons. Dreissena polymorpha and D. bugensis are able to exploit suspended detritus as a significant energy source, as well as compete directly with zooplankton for seston as a food source and with each other in areas of sympatry.


Oecologia ◽  
2020 ◽  
Vol 192 (4) ◽  
pp. 1111-1126 ◽  
Author(s):  
Julia C. Petta ◽  
Oliver N. Shipley ◽  
Sabine P. Wintner ◽  
Geremy Cliff ◽  
Matt L. Dicken ◽  
...  

2000 ◽  
Vol 36 (3) ◽  
pp. 259-272 ◽  
Author(s):  
I. Tayasu ◽  
F. Hyodo ◽  
Y. Takematsu ◽  
A. Sugimoto ◽  
T. Inoue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document