scholarly journals Life Cycle and Intrusion Tolerance Optimization Topology Models for Wireless Sensor Networks

2018 ◽  
Vol 14 (05) ◽  
pp. 105 ◽  
Author(s):  
Jinhui Lei ◽  
Xiyan Tian ◽  
Zhixia Zhang

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-fareast-language: DE; mso-ansi-language: EN-US; mso-bidi-language: AR-SA;">Wireless sensor networks have such disadvantages as upper limit of node energy and poor intrusion tolerance, etc. In light of these disadvantages, by analyzing such key parameters as residual energy, load, node degree, this paper proposes a wireless sensor network (WSN) life-cycle model, which fully considers node energy consumption and load fault tolerance, and a scale-free intrusion tolerance and targeted attacks optimization topology model. Then it verifies their feasibility through simulation test. The results show that the WSN life cycle model takes into account the impacts of residual energy and load capacity on the life cycle and fault tolerance of the system and improves the connectivity probability of high energy consumption nodes and small load nodes, leading to more uniform energy consumption of the wireless sensor network. Through the load adjustment coefficient, the life cycle of the network model is significantly increased. The simulation results show that the fault tolerance and survival time of the proposed model are both improved to some extent compared with those of other models. The proposed scale-free intrusion tolerance and targeted attacks optimization topology model optimizes the power exponent of the network using the structure entropy, and the established scale-free topology structure can make the model more tolerant to intrusion. The simulation results show that the intrusion tolerance of the algorithm proposed in this paper is 2.5 times that of the traditional network model, and the average life cycle is also significantly increased compared to those of other models.</span>

2018 ◽  
Vol 14 (05) ◽  
pp. 81
Author(s):  
Ruo Jia

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-fareast-language: DE; mso-ansi-language: EN-US; mso-bidi-language: AR-SA;">Regarding the disadvantages of Wireless Sensor Networks such as random node failure, imbalanced network energy consumption, and shorter life cycle etc., the paper proposes an improved evolving model with an overall integration of fault-tolerance topology and network energy consumption, as a fusion mechanism optimizing the original node degree, generation ability and node distance in the model; it also validates the advantages of the improved model in terms of network life cycle, residual energy of node, node spacing and fault tolerance etc. by comparing the model with the optimized model of traditional sensor. With the establishment of WSNs energy consumption model, the paper evaluates the network life cycle and analyses the influence of node spacing and residual energy of node on WSNs, by adopting which as the fitness functions of the model, a scale-free fault tolerance topology evolving model with link deletion mechanism is constructed. The simulation comparison shows that the topology structure of the improved model has significant scale-free characteristics, a balanced network energy consumption and a long network life cycle; it can also effectively increase the fault tolerance and intrusion tolerance of network.</span>


Author(s):  
VENKATESH S

In Wireless Sensor Networks (WSNs), Efficient clustering is key for optimal use of available nodes. Fault tolerance to any failure on the network or node level is an essential requirement in this context. Hence, a novel approach towards clustering and multiple object tracking in WSNs is being explored. The Proposed method employs judicious mix of burdening all available nodes including GH (Group Head) to earn energy efficiency and fault tolerance. Initially, node with the maximum residual energy in a cluster becomes group head and node with the second maximum residual energy becomes altruist node, but not mandatory. Later on, selection of cluster head will be based on available residual energy. We use Matlab software as simulation platform to check energy consumption at cluster by evaluation of proposed algorithm. Eventually we evaluated and compare this proposed method against previous method and we demonstrate our model is better optimization than other method such as Traditional clustering in energy consumption rate.


2018 ◽  
Vol 14 (9) ◽  
pp. 155014771880062 ◽  
Author(s):  
Yourui Huang ◽  
Zhenping Chen ◽  
Tao Han ◽  
Xiaotao Liu

Aimed at the limited energy supply and imperfect topological tolerance for underground wireless sensor networks, one energy-efficient random-walk scale-free topology model is proposed in this article, and a power network topology structure with adjustable rate index gets generated. At first, the network is divided into several clusters, and the cluster heads are selected with the use of random-walk strategy. During the growth of the network, with the introduction of preferred connection for scale-free network, together with considering both the node’s residual energy and the distance among nodes, nodes with larger residual energy present higher connectivity probability, so that the energy balance of the network gets realized. Simulation results show that the communication among the cluster heads selected by the proposed random-walk scale-free topology model presents not only the power-law characteristics of scale-free networks but also has better stability, higher fault tolerance, and it can still balance the energy consumption for nodes and the network and therefore can prolong the lifetime of the network.


2012 ◽  
Vol 490-495 ◽  
pp. 1392-1396 ◽  
Author(s):  
Chu Hang Wang

Topology control is an efficient approach which can reduce energy consumption for wireless sensor networks, and the current algorithms mostly focus on reducing the nodes’ energy consumption by power adjusting, but pay little attention to balance energy consumption of the whole network, which results in premature death of many nodes. Thus, a distributed topology control algorithm based on path-loss and residual energy (PRTC) is designed in this paper. This algorithm not only maintains the least loss links between nodes but also balances the energy consumption of the network. The simulation results show that the topology constructed by PRTC can preserve network connectivity as well as extend the lifetime of the network and provide good performance of energy consumption.


2020 ◽  
Author(s):  
Hamid Reza Farahzadi ◽  
Mostafa Langarizadeh ◽  
Mohammad Mirhosseini ◽  
Seyed Ali Fatemi Aghda

AbstractWireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Haiyan Shi ◽  
Wanliang Wang ◽  
Ngaiming Kwok

The wireless sensor network (WSN), consisting of a large number of microsensors with wireless communication abilities, has become an indispensable tool for use in monitoring and surveillance applications. Despite its advantages in deployment flexibility and fault tolerance, the WSN is vulnerable to failures due to the depletion of limited onboard battery energy. A major portion of energy consumption is caused by the transmission of sensed results to the master processor. The amount of energy used, in fact, is related to both the duration of sensing and data transmission. Hence, in order to extend the operation lifespan of the WSN, a proper allocation of sensing workload among the sensors is necessary. An assignment scheme is here formulated on the basis of the divisible load theory, namely, the energy dependent divisible load theory (EDDLT) for sensing workload allocations. In particular, the amount of residual energies onboard sensors are considered while deciding the workload assigned to each sensor. Sensors with smaller amount of residual energy are assigned lighter workloads, thus, allowing for a reduced energy consumption and the sensor lifespan is extended. Simulation studies are conducted and results have illustrated the effectiveness of the proposed workload allocation method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zuo Chen ◽  
Min He ◽  
Wei Liang ◽  
Kai Chen

Wireless sensor network (WSN) is a kind of distributed and self-organizing networks, in which the sensor nodes have limited communication bandwidth, memory, and limited energy. The topology construction of this network is usually vulnerable when attacked by malicious nodes. Besides, excessive energy consumption is a problem that can not be ignored. Therefore, this paper proposes a secure topology protocol of WSN which is trust-aware and of low energy consumption, called TLES. The TLES considers the trust value as an important factor affecting the behavior of node. In detail, the TLES would take trust value, residual energy of the nodes, and node density into consideration when selecting cluster head nodes. Then, TLES constructs these cluster head nodes by choosing the next hop node according to distance to base station (BS), nodes’ degrees, and residual energy, so as to establish a safe, reliable, and energy saving network. Experimental results show that the algorithm can effectively isolate the malicious node in the network and reduce the consumption of energy of the whole network.


Author(s):  
Taous Lechani ◽  
Victor Tourtchine ◽  
Said Amari

<p>The limited energy of nodes in wireless sensor networks and the<br />impossibility of replacing their batteries, have lead to protocols development<br />which optimize and balance the energy consumption over the network.<br />LEACH is the most used hierarchical protocol. However, one major<br />weakness of the LEACH protocol lies in both of its random cluster formation<br />and cluster head election. In this paper, we present two new protocols based<br />virtual grid clustering on coverage area. In the first one, sensing area is<br />devided into grids as squares named as VSG-LEACH and in the second one<br />into grids as hexagons named as VHG-LEACH. In each zone, one cluster<br />head is elected according to its residual energy and its distance from the cell<br />center. The simulation results show that the network lifetime is prolonged by<br />169.67% and the energy consumption is improved by 80.97% compared to<br />LEACH protocol.</p>


Sign in / Sign up

Export Citation Format

Share Document