scholarly journals Real-Time Concept Drift Detection and Its Application to ECG Data

Author(s):  
Ketan Sanjay Desale ◽  
Swati Shinde

Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets.

Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 349-371
Author(s):  
Hassan Mehmood ◽  
Panos Kostakos ◽  
Marta Cortes ◽  
Theodoros Anagnostopoulos ◽  
Susanna Pirttikangas ◽  
...  

Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 859
Author(s):  
Abdulaziz O. AlQabbany ◽  
Aqil M. Azmi

We are living in the age of big data, a majority of which is stream data. The real-time processing of this data requires careful consideration from different perspectives. Concept drift is a change in the data’s underlying distribution, a significant issue, especially when learning from data streams. It requires learners to be adaptive to dynamic changes. Random forest is an ensemble approach that is widely used in classical non-streaming settings of machine learning applications. At the same time, the Adaptive Random Forest (ARF) is a stream learning algorithm that showed promising results in terms of its accuracy and ability to deal with various types of drift. The incoming instances’ continuity allows for their binomial distribution to be approximated to a Poisson(1) distribution. In this study, we propose a mechanism to increase such streaming algorithms’ efficiency by focusing on resampling. Our measure, resampling effectiveness (ρ), fuses the two most essential aspects in online learning; accuracy and execution time. We use six different synthetic data sets, each having a different type of drift, to empirically select the parameter λ of the Poisson distribution that yields the best value for ρ. By comparing the standard ARF with its tuned variations, we show that ARF performance can be enhanced by tackling this important aspect. Finally, we present three case studies from different contexts to test our proposed enhancement method and demonstrate its effectiveness in processing large data sets: (a) Amazon customer reviews (written in English), (b) hotel reviews (in Arabic), and (c) real-time aspect-based sentiment analysis of COVID-19-related tweets in the United States during April 2020. Results indicate that our proposed method of enhancement exhibited considerable improvement in most of the situations.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2835 ◽  
Author(s):  
Zhongjie Hou ◽  
Jinxi Xiang ◽  
Yonggui Dong ◽  
Xiaohui Xue ◽  
Hao Xiong ◽  
...  

A prototype of an electrocardiogram (ECG) signal acquisition system with multiple unipolar capacitively coupled electrodes is designed and experimentally tested. Capacitively coupled electrodes made of a standard printed circuit board (PCB) are used as the sensing electrodes. Different from the conventional measurement schematics, where one single lead ECG signal is acquired from a pair of sensing electrodes, the sensing electrodes in our approaches operate in a unipolar mode, i.e., the biopotential signals picked up by each sensing electrodes are amplified and sampled separately. Four unipolar electrodes are mounted on the backrest of a regular chair and therefore four channel of signals containing ECG information are sampled and processed. It is found that the qualities of ECG signal contained in the four channel are different from each other. In order to pick up the ECG signal, an index for quality evaluation, as well as for aggregation of multiple signals, is proposed based on phase space reconstruction. Experimental tests are carried out while subjects sitting on the chair and clothed. The results indicate that the ECG signals can be reliably obtained in such a unipolar way.


Author(s):  
Prasanna Lakshmi Kompalli

Data coming from different sources is referred to as data streams. Data stream mining is an online learning technique where each data point must be processed as the data arrives and discarded as the processing is completed. Progress of technologies has resulted in the monitoring these data streams in real time. Data streams has created many new challenges to the researchers in real time. The main features of this type of data are they are fast flowing, large amounts of data which are continuous and growing in nature, and characteristics of data might change in course of time which is termed as concept drift. This chapter addresses the problems in mining data streams with concept drift. Due to which, isolating the correct literature would be a grueling task for researchers and practitioners. This chapter tries to provide a solution as it would be an amalgamation of all techniques used for data stream mining with concept drift.


2020 ◽  
Vol 31 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Zhe Yang ◽  
Sameer Al-Dahidi ◽  
Piero Baraldi ◽  
Enrico Zio ◽  
Lorenzo Montelatici

Sign in / Sign up

Export Citation Format

Share Document