scholarly journals A Features Fusion Approach for Neonatal and Pediatrics Brain Tumor Image Analysis Using Genetic and Deep Learning Techniques

Author(s):  
Prashantha SJ ◽  
H.N. Prakash

<p class="0abstract">Nowadays, Deep learning (DL) is the growing trend towards creating visual representations of human body organs for clinical analysis, medical interventions as well as to diagnose and treat diseases.  This paper propose a method for neonatal and pediatric brain tumors image analysis and prerequisites a T2- weighted MR images only. The pipeline stages of the proposed work as follows: In the first stage, designed a set of specific feature vectors description for high-level classification task using Conventional and deep learning (DL) Feature Extraction methods. The second stage, select a deep features based on proposed convolutional neural network (CNN) method and conventional subset features are from Genetic Algorithm (GA). The third stage, merge the selected features by adapting fusion technique. Finally, predict the brain image is either normal or abnormal.  The results demonstrated that the proposed method obtained accurate classification and revealed its robustness to difference in ages and acquisition protocols. The obtained results shows that based on combined  deep learning features (DLF) and  conventional features  have been significantly improves the classification accuracy of the support vector machines (SVM) classifier up to 97.00%.</p>

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chen Xing ◽  
Li Ma ◽  
Xiaoquan Yang

Deep learning methods have been successfully applied to learn feature representations for high-dimensional data, where the learned features are able to reveal the nonlinear properties exhibited in the data. In this paper, deep learning method is exploited for feature extraction of hyperspectral data, and the extracted features can provide good discriminability for classification task. Training a deep network for feature extraction and classification includes unsupervised pretraining and supervised fine-tuning. We utilized stacked denoise autoencoder (SDAE) method to pretrain the network, which is robust to noise. In the top layer of the network, logistic regression (LR) approach is utilized to perform supervised fine-tuning and classification. Since sparsity of features might improve the separation capability, we utilized rectified linear unit (ReLU) as activation function in SDAE to extract high level and sparse features. Experimental results using Hyperion, AVIRIS, and ROSIS hyperspectral data demonstrated that the SDAE pretraining in conjunction with the LR fine-tuning and classification (SDAE_LR) can achieve higher accuracies than the popular support vector machine (SVM) classifier.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1443
Author(s):  
Mai Ramadan Ibraheem ◽  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Mohammed Elmogy

The formation of malignant neoplasm can be seen as deterioration of a pre-malignant skin neoplasm in its functionality and structure. Distinguishing melanocytic skin neoplasms is a challenging task due to their high visual similarity with different types of lesions and the intra-structural variants of melanocytic neoplasms. Besides, there is a high visual likeliness level between different lesion types with inhomogeneous features and fuzzy boundaries. The abnormal growth of melanocytic neoplasms takes various forms from uniform typical pigment network to irregular atypical shape, which can be described by border irregularity of melanocyte lesion image. This work proposes analytical reasoning for the human-observable phenomenon as a high-level feature to determine the neoplasm growth phase using a novel pixel-based feature space. The pixel-based feature space, which is comprised of high-level features and other color and texture features, are fed into the classifier to classify different melanocyte neoplasm phases. The proposed system was evaluated on the PH2 dermoscopic images benchmark dataset. It achieved an average accuracy of 95.1% using a support vector machine (SVM) classifier with the radial basis function (RBF) kernel. Furthermore, it reached an average Disc similarity coefficient (DSC) of 95.1%, an area under the curve (AUC) of 96.9%, and a sensitivity of 99%. The results of the proposed system outperform the results of other state-of-the-art multiclass techniques.


Author(s):  
Pedro Pedrosa Rebouças Filho ◽  
Suane Pires Pinheiro Da Silva ◽  
Jefferson Silva Almeida ◽  
Elene Firmeza Ohata ◽  
Shara Shami Araujo Alves ◽  
...  

Chronic kidney diseases cause over a million deaths worldwide every year. One of the techniques used to diagnose the diseases is renal scintigraphy. However, the way that is processed can vary depending on hospitals and doctors, compromising the reproducibility of the method. In this context, we propose an approach to process the exam using computer vision and machine learning to classify the stage of chronic kidney disease. An analysis of different features extraction methods, such as Gray-Level Co-occurrence Matrix, Structural Co-occurrence Matrix, Local Binary Patters (LBP), Hu's Moments and Zernike's Moments in combination with machine learning methods, such as Bayes, Multi-layer Perceptron, k-Nearest Neighbors, Random Forest and Support Vector Machines (SVM), was performed. The best result was obtained by combining LBP feature extractor with SVM classifier. This combination achieved accuracy of 92.00% and F1-score of 91.00%, indicating that the proposed method is adequate to classify chronic kidney disease in two stages, being a high risk of developing end-stage renal failure and other outcomes, and otherwise.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1494 ◽  
Author(s):  
Abelardo Baez ◽  
Himar Fabelo ◽  
Samuel Ortega ◽  
Giordana Florimbi ◽  
Emanuele Torti ◽  
...  

Currently, high-level synthesis (HLS) methods and tools are a highly relevant area in the strategy of several leading companies in the field of system-on-chips (SoCs) and field programmable gate arrays (FPGAs). HLS facilitates the work of system developers, who benefit from integrated and automated design workflows, considerably reducing the design time. Although many advances have been made in this research field, there are still some uncertainties about the quality and performance of the designs generated with the use of HLS methodologies. In this paper, we propose an optimization of the HLS methodology by code refactoring using Xilinx SDSoCTM (Software-Defined System-On-Chip). Several options were analyzed for each alternative through code refactoring of a multiclass support vector machine (SVM) classifier written in C, using two different Zynq®-7000 SoC devices from Xilinx, the ZC7020 (ZedBoard) and the ZC7045 (ZC706). The classifier was evaluated using a brain cancer database of hyperspectral images. The proposed methodology not only reduces the required resources using less than 20% of the FPGA, but also reduces the power consumption −23% compared to the full implementation. The speedup obtained of 2.86× (ZC7045) is the highest found in the literature for SVM hardware implementations.


Author(s):  
Zi Yang ◽  
Mingli Chen ◽  
Mahdieh Kazemimoghadam ◽  
Lin Ma ◽  
Strahinja Stojadinovic ◽  
...  

Abstract Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve (AUC) of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Faten Hamed Nahhas ◽  
Helmi Z. M. Shafri ◽  
Maher Ibrahim Sameen ◽  
Biswajeet Pradhan ◽  
Shattri Mansor

This paper reports on a building detection approach based on deep learning (DL) using the fusion of Light Detection and Ranging (LiDAR) data and orthophotos. The proposed method utilized object-based analysis to create objects, a feature-level fusion, an autoencoder-based dimensionality reduction to transform low-level features into compressed features, and a convolutional neural network (CNN) to transform compressed features into high-level features, which were used to classify objects into buildings and background. The proposed architecture was optimized for the grid search method, and its sensitivity to hyperparameters was analyzed and discussed. The proposed model was evaluated on two datasets selected from an urban area with different building types. Results show that the dimensionality reduction by the autoencoder approach from 21 features to 10 features can improve detection accuracy from 86.06% to 86.19% in the working area and from 77.92% to 78.26% in the testing area. The sensitivity analysis also shows that the selection of the hyperparameter values of the model significantly affects detection accuracy. The best hyperparameters of the model are 128 filters in the CNN model, the Adamax optimizer, 10 units in the fully connected layer of the CNN model, a batch size of 8, and a dropout of 0.2. These hyperparameters are critical to improving the generalization capacity of the model. Furthermore, comparison experiments with the support vector machine (SVM) show that the proposed model with or without dimensionality reduction outperforms the SVM models in the working area. However, the SVM model achieves better accuracy in the testing area than the proposed model without dimensionality reduction. This study generally shows that the use of an autoencoder in DL models can improve the accuracy of building recognition in fused LiDAR–orthophoto data.


Author(s):  
M'Hamed Bilal Abidine ◽  
Lamya Fergani ◽  
Belkacem Fergani ◽  
Anthony Fleury

Even if it is now simple and cheap to collect sensors information in a smart home environment, the main issue remains to infer high-level activities from these simple readings. The main contribution of this work is twofold. Firstly, the authors demonstrate the efficiency of a new procedure for learning Optimized Cost-Sensitive Support Vector Machines (OCS-SVM) classifier based on the user inputs to appropriately tackle the problem of class imbalanced data. It uses a new criterion for the selection of the cost parameter attached to the training errors. Secondly, this method is assessed and compared with the Conditional Random Fields (CRF), Linear Discriminant Analysis (LDA), k-Nearest Neighbours (k-NN) and the traditional SVM. Several and various experimental results obtained on multiple real world human activity datasets using binary and ubiquitous sensors show that OCS-SVM outperforms the previous state-of-the-art classification approach.


Sign in / Sign up

Export Citation Format

Share Document