scholarly journals Voice Pathology Detection Using the Adaptive Orthogonal Transform Method, SVM and MLP.

Author(s):  
Fadwa Abakarim ◽  
Abdenbi Abenaou

In this paper, an automatic voice pathology recognition system is realized. The special features are extracted by the Adaptive Orthogonal Transform method, and to provide their statistical properties we calculated the average, variance, skewness and kurtosis values. The classification process uses two models that are widely used as a classification method in the field of signal processing: Support Vector Machine (SVM) and Multilayer Perceptron (MLP). The proposed system is tested by using a German voice database: the Saarbruecken Voice Database (SVD). The experimental results show that the Adaptive Orthogonal Transform method works perfectly with the Multilayer Perceptron Neural Network, which achieved 98.87% accuracy. On the other hand, the combination of the Adaptive Orthogonal Transform method and Support Vector Machine reached 85.79% accuracy.

2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1461
Author(s):  
Shun-Hsin Yu ◽  
Jen-Shuo Chang ◽  
Chia-Hung Dylan Tsai

This paper proposes an object classification method using a flexion glove and machine learning. The classification is performed based on the information obtained from a single grasp on a target object. The flexion glove is developed with five flex sensors mounted on five finger sleeves, and is used for measuring the flexion of individual fingers while grasping an object. Flexion signals are divided into three phases, and they are the phases of picking, holding and releasing, respectively. Grasping features are extracted from the phase of holding for training the support vector machine. Two sets of objects are prepared for the classification test. One is printed-object set and the other is daily-life object set. The printed-object set is for investigating the patterns of grasping with specified shape and size, while the daily-life object set includes nine objects randomly chosen from daily life for demonstrating that the proposed method can be used to identify a wide range of objects. According to the results, the accuracy of the classifications are achieved 95.56% and 88.89% for the sets of printed objects and daily-life objects, respectively. A flexion glove which can perform object classification is successfully developed in this work and is aimed at potential grasp-to-see applications, such as visual impairment aid and recognition in dark space.


Author(s):  
Jalel Akaichi

In this work, we focus on the application of text mining and sentiment analysis techniques for analyzing Tunisian users' statuses updates on Facebook. We aim to extract useful information, about their sentiment and behavior, especially during the “Arabic spring” era. To achieve this task, we describe a method for sentiment analysis using Support Vector Machine and Naïve Bayes algorithms, and applying a combination of more than two features. The output of this work consists, on one hand, on the construction of a sentiment lexicon based on the Emoticons and Acronyms' lexicons that we developed based on the extracted statuses updates; and on the other hand, it consists on the realization of detailed comparative experiments between the above algorithms by creating a training model for sentiment classification.


2018 ◽  
Vol 159 ◽  
pp. 02048
Author(s):  
Rahayu ◽  
G.T. Anuraga ◽  
H. Prasetia ◽  
Umar Khayam

Partial Discharge (PD) is one of the causes of insulation deteriorisation mode and impacts on the reliability of high voltage equipment. Therefore, PD measurement is used for diagnostic technique of high voltage equipment. Diagnostic output of high voltage equipment contain information about PD type, PD cause, PD location and PD severity. after identification, a proper preventive maintenance pattern can be performed. Therefore PD pattern recognition system is very important on PD diagnostic system to recognize the PD pattern and determine the level of hazard that occurs in specimen object or high voltage equipment‥ In this paper, PD pattern recognition system is designed with fractal geometry approach and support vector machine (SVM) algorithm. The coding and programming of graphical user interface of the application is done. Each PD type and hazard level on various insulating materials (solid, liquid and gas) have the dimensions of the fractal and the lacunarity. The type of PD (void, corona) and its danger level (bad, fair and good) can be identified with the support vector machine (SVM)


2020 ◽  
Author(s):  
Thamba Meshach W ◽  
Hemajothi S ◽  
Mary Anita E A

Abstract Human affect recognition (HAR) using images of facial expression and electrocardiogram (ECG) signal plays an important role in predicting human intention. This system improves the performance of the system in applications like the security system, learning technologies and health care systems. The primary goal of our work is to recognize individual affect states automatically using the multilayered binary structured support vector machine (MBSVM), which efficiently classify the input into one of the four affect classes, relax, happy, sad and angry. The classification is performed efficiently by designing an efficient support vector machine (SVM) classifier in multilayer mode operation. The classifier is trained using the 8-fold cross-validation method, which improves the learning of the classifier, thus increasing its efficiency. The classification and recognition accuracy is enhanced and also overcomes the drawback of ‘facial mimicry’ by using hybrid features that are extracted from both facial images (visual elements) and physiological signal ECG (signal features). The reliability of the input database is improved by acquiring the face images and ECG signals experimentally and by inducing emotions through image stimuli. The performance of the affect recognition system is evaluated using the confusion matrix, obtaining the classification accuracy of 96.88%.


Sign in / Sign up

Export Citation Format

Share Document