Investigation on Damage Mechanisms of PE Self-reinforced Composites by Acoustic Emission Technology

2012 ◽  
Vol 5 (3) ◽  
pp. 281-287
Author(s):  
Song-Mei Bi
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiangtao Tan ◽  
Gaoming Jiang ◽  
Guangjun Wu ◽  
Pibo Ma

Abstract In this work, based on the quasi-static tensile test and acoustic emission technology, the tensile properties of two types of three-dimensional flat-knitted inlay fabrics reinforced composites are investigated, and the acoustic emission characteristic parameters of various damage mechanisms are obtained. The transverse tensile process of specimens could be divided into the elastic stage, yield stage, and fracture stage. We found that, compared with the fluctuation of the stress-strain curve in the yield stage, weft insertion yarns in composite with interlock structure broke almost simultaneously, while the composite with plain stitch broke successively. The transverse and longitudinal tensile strength of the composite with interlock structure was 44.70% and 28.63% higher than the composite with plain structure, respectively. The SEM micrographs showed that the damage mechanism of the composites was matrix fracture, fiber-matrix debonding, and fiber breakage. The amplitude ranges of the three damage mechanisms were 50–65 dB, 65–80 dB, and 90–100 dB, respectively, and the frequency ranges were 35–114 kHz, 116–187 kHz, and 252–281 kHz, respectively. Fiber-matrix debonding and matrix fracture had large cumulative AE energy, numerous events, and long duration time, while fiber breakage had the characteristics of large amplitude, high frequency, low cumulative AE energy, few events, and short duration time.


Author(s):  
A. Albers ◽  
M. Dickerhof

The application of Acoustic Emission technology for monitoring rolling element or hydrodynamic plain bearings has been addressed by several authors in former times. Most of these investigations took place under idealized conditions, to allow the concentration on one single source of emission, typically recorded by means of a piezoelectric sensor. This can be achieved by either eliminating other sources in advance or taking measures to shield them out (e. g. by placing the acoustic emission sensor very close to the source of interest), so that in consequence only one source of structure-born sound is present in the signal. With a practical orientation this is often not possible. In point of fact, a multitude of potential sources of emission can be worth considering, unfortunately superimposing one another. The investigations reported in this paper are therefore focused on the simultaneous monitoring of both bearing types mentioned above. Only one piezoelectric acoustic emission sensor is utilized, which is placed rather far away from the monitored bearings. By derivation of characteristic values from the sensor signal, different simulated defects can be detected reliably: seeded defects in the inner and outer race of rolling element bearings as well as the occurrence of mixed friction in the sliding surface bearing due to interrupted lubricant inflow.


2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.


Sign in / Sign up

Export Citation Format

Share Document