Testing of Acoustic Emission Technology to Detect Cracks and Corrosion in the Marine Environment

2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.

Author(s):  
Garry L. Sommer ◽  
Brad S. Smith

Enbridge Pipelines Inc. operates one of the longest and most complex pipeline systems in the world. A key aspect of the Enbridge Integrity Management Program (IMP) is the trending, analysis, and management of data collected from over 50 years of pipeline operations. This paper/presentation describes Enbridge’s challenges, learnings, processes, and innovations for meeting today’s increased data management/integration demands. While much has been written around the premise of data management/integration, and many software solutions are available in the commercial market, the greatest data management challenge for mature pipeline operators arises from the variability of data (variety of technologies, data capture methods, and data accuracy levels) collected over the operating history of the system. Ability to bring this variable data set together is substantially the most difficult aspect of a coordinated data management effort and is critical to the success of any such project. Failure to do this will result in lack of user confidence and inability to gain “buy-in” to new data management processes. In 2001 Enbridge began a series of initiatives to enhance data management and analysis. Central to this was the commitment to accurate geospatial alignment of integrity data. This paper/presentation describes Enbridge’s experience with development of custom software (Integrated Spatial Analysis System – ISAS) including critical learnings around a.) Data alignment efforts and b.) Significant efforts involved in development of an accurate pipe centreline. The paper/presentation will also describe co-incident data management programs that link to ISAS. This includes enhanced database functionality for excavation data and development of software to enable electronic transfer of data to this database. These tools were built to enable rapid transfer of field data and “real time” tool validation through automated unity plots of tool defect data vs. that measured in the field.


Author(s):  
Ingar Scherf ◽  
Trine Hansen ◽  
Gudfinnur Sigurdsson

Offshore Structures operate for decades in extremely hostile environments. It is important during this period that the structural integrity is efficiently managed to ensure continuous and safe operation. Increased use of enhanced oil and gas recovery means it is likely that many existing installations will remain operational for a significant period beyond the original design life. The operator needs to capture, evaluate and, if necessary, mitigate design premise changes which inevitably occur during the life of a structure. Further, advances in knowledge and technology may imply changes in codes and standards as well as in analysis methodologies. Changes in corporate structures, transfer of operator responsibility and retirement of experienced engineers call for reliable means to transfer historical data and experience to new stakeholders. Effective emergency preparedness capabilities, structural integrity assessments and inspection planning presuppose that as-is analysis models and corresponding information are easily accessible. This paper presents an implementation of the in-service integrity management process described in the new revision of NORSOK standard N-005 [1] for a large fleet of jackets at the Norwegian Continental Shelf. The process, comprising management of design premise changes as well as state-of-the-art technical solutions over a range of disciplines, has enabled the operator to prolong the service life with decades at minimum investments. A structure integrity management system (SIMS) has been developed and digitized over years and streamlined to meet the needs and challenges in the operation and management of the jacket platforms. SIMS enables a rather lean organization to control the structural integrity status of all load-bearing structures at any time. Platform reinforcements and modifications along with other operational risk reducing measures like unman the platforms in severe storms enable continued use with the same level of safety as for new manned platforms. Advanced analyses are used to document regulatory compliance. Modern fatigue and reliability based inspection planning analyses have reduced the costs needed for inspection of fatigue cracks significantly. The benefits from the SIMS system are substantial and the resulting safety and productivity gains are apparent. The continuity of knowledge and experience is maintained, reducing risk to safety and regularity. The digital transformation related to management of structural integrity status as described in NORSOK standard N-005 is realized through SIMS.


2021 ◽  
Vol 2 ◽  
Author(s):  
Domenic Di Francesco ◽  
Marios Chryssanthopoulos ◽  
Michael Havbro Faber ◽  
Ujjwal Bharadwaj

Abstract Attempts to formalize inspection and monitoring strategies in industry have struggled to combine evidence from multiple sources (including subject matter expertise) in a mathematically coherent way. The perceived requirement for large amounts of data are often cited as the reason that quantitative risk-based inspection is incompatible with the sparse and imperfect information that is typically available to structural integrity engineers. Current industrial guidance is also limited in its methods of distinguishing quality of inspections, as this is typically based on simplified (qualitative) heuristics. In this paper, Bayesian multi-level (partial pooling) models are proposed as a flexible and transparent method of combining imperfect and incomplete information, to support decision-making regarding the integrity management of in-service structures. This work builds on the established theoretical framework for computing the expected value of information, by allowing for partial pooling between inspection measurements (or groups of measurements). This method is demonstrated for a simulated example of a structure with active corrosion in multiple locations, which acknowledges that the data will be associated with some precision, bias, and reliability. Quantifying the extent to which an inspection of one location can reduce uncertainty in damage models at remote locations has been shown to influence many aspects of the expected value of an inspection. These results are considered in the context of the current challenges in risk based structural integrity management.


Author(s):  
Robert V. Hadden ◽  
Kevin J. De Leenheer

As part of its Integrity Management Program, Trans Mountain Pipe Line hydrostatically tests sections of its pipeline system with water transported to test sites through the pipeline. After completion of the testing, the water continues through the pipeline to a water treatment facility where it is treated and discharged to the municipal sewer system. Hydrostatic testing of an operating pipeline, although simple in concept, is a major undertaking. This paper will outline the technical aspects of Trans Mountain’s hydrostatic testing program including: test water transportation, environmental constraints, coordination of test activities and water treatment.


Author(s):  
Hugo García ◽  
Carlos Nieves ◽  
Juan Diego Colonia

Oil pipelines systems for hydrocarbons transportation are linear projects that can reach great lengths. For this reason, theirs paths may cross different geological formations, soil types, navigable or torrential waters; and they may face geotechnical and hydrological instability problems such as creeping slopes, geological faults, landslides, scour and differential settling which causes different relative movements between the soil and the pipeline. The OCENSA (Oleoducto Central S.A) 30″ and 36″ diameter system was built in 1997 to transport crude oil from the eastern foothills of the Andes to the Caribbean Coast along some 830 km of the Eastern Andes mountains range and the spurs of the central Andes mountains range of Colombia: it was a major challenge to secure the integrity of the pipeline in the face of natural events.


Author(s):  
Miaad Safari ◽  
David Shaw

Abstract As integrity programs mature over the life of a pipeline, an increasing number of data points are collected from second, third, or further condition monitoring cycles. Types of data include Inline Inspection (ILI) or External Corrosion Direct Assessment (ECDA) inspection data, validation or remediation dig information, and records of various repairs that have been completed on the pipeline system. The diversity and massive quantity of this gathered data proposes a challenge to pipeline operators in managing and maintaining these data sets and records. The management of integrity data is a key element to a pipeline system Integrity Management Program (IMP) as per the CSA Z662[1]. One of the most critical integrity datasets is the repair information. Incorrect repair assignments on a pipeline can lead to duplicate unnecessary excavations in the best scenario and a pipeline failure in the worst scenario. Operators rely on various approaches to manage and assign repair data to ILIs such as historical records reviews, ILI-based repair assignments, or chainage-based repair assignments. However, these methods have significant gaps in efficiency and/or accuracy. Failure to adequately manage excavation and repair data can lead to increased costs due to repeated excavation of an anomaly, an increase in resources required to match historical information with new data, uncertainty in the effectiveness of previous repairs, and the possibility of incorrect assignment of repairs to unrepaired features. This paper describes the approach adopted by Enbridge Gas to track and maintain repairs, as a part of the Pipeline Risk and Integrity Management (PRIM) platform. This approach was designed to create a robust excavation and repair management framework, providing a robust system of data gathering and automation, while ensuring sufficient oversight by Integrity Engineers. Using this system, repairs are assigned to each feature in an excavation, not only to a certain chainage along the pipeline. Subsequently, when a new ILI results report is received, a process of “Repair Matching” is completed to assign preexisting repairs and assessments to the newly reported features at a feature level. This process is partially automated, whereby pre-determined box-to-box features matched between ILIs can auto-populate repairs for many of the repaired features. The proposed excavation management system would provide operators a superior approach to managing their repair history and projecting historical repairs and assessments onto new ILI reports, prior to assessing the ILI and issuing further digs on the pipeline. This optimized method has many advantages over the conventional repair management methods used in the industry. This method is best suited for operators that are embarking on their second or third condition monitoring cycle, with a moderate number of historical repairs.


Author(s):  
Mahmoud Ibrahim ◽  
Karmun Doucette ◽  
Sherif Hassanien ◽  
Doug Langer

The application of reliability-based structural integrity enables the process of quantitative risk assessment as part of pipelines’ integrity management program (IMP). This paper explores two topics that present challenges in terms of the practical adoption of a reliability-based IMP. The first challenge is the balance between perceived and true risk when implementing a quantitative reliability-based integrity model. This is a cornerstone for building stakeholder confidence in the calculated probability of failure (PoF) which is applied to safety and economically driven integrity decisions. The second challenge is the assurance that all relevant sources of uncertainty have been incorporated, which is essential for ensuring an accurate representation of the risk of failure of the pipeline. The level of conservatism (i.e. sufficient margin of error to maintain safety) incorporated when addressing these challenges may create a situation where calculated PoFs become inflated; becoming disproportionate to the failure history and contradictory to the current safe operation of pipelines being modeled. Two different PoF calibration approaches are proposed as practical options to address these challenges. The first method calibrates model error using an operator’s in-service failure history (i.e. failures that occurred under normal operation). The second method uses a set of failure data (including hydrostatic test failures and in-service failures) as selected by the operator considering key factors to ensure adequate representation of their specific pipeline system. These options will be demonstrated by assessing the integrity reliability of a hypothetical pipeline system. This work is expected to help evaluate the feasibility of challenging current practices regarding practical inclusion of epistemic uncertainty in integrity reliability analysis of pipelines.


Author(s):  
Neil Ripley ◽  
Elisa Scordo ◽  
Alex Baumgard

BGC Engineering Inc. (BGC) was retained by a large pipeline operator to develop a GIS-based system to assess and rank the environmental consequence of a pipeline rupture on watercourse crossings within their pipeline system. Several physical, biological and socio-economic factors contribute to the environmental consequence of a pipeline rupture on a watercourse. This study examined select spatial and vulnerability factors, and did not consider biologic or economic impacts. Three factors were selected as part of the initial study to prioritize the pipeline watercourse crossings according to: (1) size of the watercourse at the pipeline crossing, (2) proximity of each individual crossing to larger downstream watercourses, and (3) pipeline liquid flow rate volume. A spatial analysis was conducted to determine the first two factors, while input for the third factor was provided by the pipeline operator. Watercourse size was determined using Strahler’s stream order classification (Strahler 1952), while proximity to larger downstream watercourses was assessed using a Geographic Information System (GIS). This paper presents an overview of the data sources and methods used to develop an initial screening tool for identifying high consequence crossings within a pipeline system, and highlights the challenges encountered with acquiring and processing data to include in a consequence rating system. As with other pipeline risk assessments, the main challenges of this work include data availability, data integrity and resource limitations. This system is intended to fit within the pipeline operator’s current geohazard integrity management program and direct resources for a multi-year baseline field inspection program.


Author(s):  
Shengrun Shi ◽  
Zhiyuan Han ◽  
Zipeng Liu ◽  
Patrick Vallely ◽  
Slim Soua ◽  
...  

Structural degradation of rails will unavoidably take place with time due to cyclic bending stresses, rolling contact fatigue, impact and environmental degradation. Rail infrastructure managers employ a variety of techniques and equipment to inspect rails. Still tens of rail failures are detected every year on all major rail networks. Inspection of the rail network is normally carried out at night time, when normal traffic has ceased. As the implementation of the 24-h railway moves forward to address the increasing demand for rail transport, conventional inspection processes will become more difficult to implement. Therefore, there is an obvious need to gradually replace outdated inspection methodologies with more efficient remote condition monitoring technology. The remote condition monitoring techniques employed should be able to detect and evaluate defects without causing any reduction in the optimum rail infrastructure availability. Acoustic emission is a passive remote condition monitoring technique which can be employed for the quantitative evaluation of the structural integrity of rails. Acoustic emission sensors can be easily installed on rails in order to monitor the structural degradation rate in real time. Therefore, apart from detecting defects, acoustic emission can be realistically applied to quantify damage. In this study, the authors investigated the performance of acoustic emission in detecting and quantifying damage in rail steel samples subjected to cyclic fatigue loads during experiments carried out under laboratory conditions. Herewith, the key results obtained are presented together with a detailed discussion of the approach employed in filtering noise sources during data acquisition and subsequent signal processing.


Author(s):  
Jeremiah Konell ◽  
Brian Dedeke ◽  
Chris Hurst ◽  
Shanshan Wu ◽  
Joseph Bratton

Abstract In preparation for the upcoming (currently in draft form) Recommended Practice (RP) on Dent Assessment and Management (API 1183) [1], Explorer Pipeline Company, Inc. (Explorer) has performed an internal procedural review to determine how to effectively implement the methodologies into their Integrity Management Program (IMP). Explorer’s pipeline system transports hazardous liquids and is comprised of over 1,800 miles of pipeline ranging in diameter from 3 to 28 inches. The majority of the system was installed in the 1970s, but parts of the system were also installed as early as the 1940s. The primary focus of this review and implementation into the IMP is in regard to performing and responding to in-line inspection (ILI) based integrity assessments. Prior to the development of API 1183, dent assessment and management consisted of following a set of prescriptive condition assessments outlined in the Code of Federal Regulations (CFR) Title 49, Part 195.452. In order to do this, pipeline operators required basic information, such as dent depth, orientation, and interaction with potential stress risers such as metal loss, cracks, gouges, welds, etc. However, in order to fully implement API 1183, additional parameters are needed to define the dent shape, restraint condition, defect interaction, and pipeline operating conditions. Many new and necessary parameters were identified throughout the IMP, from the very initial pre-assessment stage (new ILI vendor requirements as part of the tool/vendor selection process) all the way to defining an appropriate reassessment interval (new process of analyzing dent fatigue life). This paper summarizes the parameters of API 1183 that were not part of Explorer’s current IMP. The parameters are identified, and comments are provided to rank the level of necessity from “must have” to “beneficial” (e.g. can sound and conservative assumptions be made when a parameter is not available). Comments are also provided to explain the impact of applying assumptions in place of parameters. The table of identified parameters should provide a useful tool for other pipeline operators who are considering implementing API 1183 as part of their overall IMP.


Sign in / Sign up

Export Citation Format

Share Document