Long-Term Effects of Large Woody Debris Addition on Stream Habitat and Brook Trout Populations

2010 ◽  
Vol 1 (2) ◽  
pp. 146-151 ◽  
Author(s):  
John A. Sweka ◽  
Kyle J. Hartman ◽  
Jonathan M. Niles

Abstract In this study, we resurveyed stream habitat and sampled brook trout Salvelinus fontinalis populations 6 y after large woody debris additions to determine long-term changes in habitat and brook trout populations. In a previous study, we added large woody debris to eight streams in the central Appalachians of West Virginia to determine whether stream habitat could be enhanced and brook trout populations increased following habitat manipulation. The large woody debris additions had no overall effect on stream habitat and brook trout populations by 6 y after the additions. The assumption that a lack of large woody debris is limiting stream habitat and brook trout populations was not supported by our results. In high-gradient streams, habitat complexity may be governed more by the abundance of boulders and large woody debris may have a lesser influence on trout populations.

2007 ◽  
Vol 64 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Julie Deschênes ◽  
Marco A Rodríguez

We used hierarchical linear regression to examine relationships between brook trout (Salvelinus fontinalis) density and habitat features nested at three levels: sections within reaches, reaches within streams, and streams within a basin. Brook trout density and environmental variables were quantified at 600 stream sections distributed among 120 reaches and 22 streams in the Cascapedia River basin, Quebec, Canada. Decomposition of variance showed that variation in density among streams was small relative to that among sections or reaches and not statistically significant. Density was influenced by habitat variables at both the section (current velocity, woody debris, cover) and reach (subbasin area, height increment at flood, valley width) levels. A cross-level interaction between current velocity and subbasin area pointed to a "contextual" effect: density showed stronger decline with current velocity in larger subbasins than in smaller subbasins. This result suggests that there was no single "best scale" for examining fish–environment relationships. Accounting for contextual effects by use of hierarchical models can enhance our understanding of how habitat features influence fish densities at multiple spatial scales.


1973 ◽  
Vol 30 (5) ◽  
pp. 698-701 ◽  
Author(s):  
R. A. Drummond ◽  
W. A. Spoor ◽  
G. F. Olson

Changes in cough frequency, locomotor activity, and feeding behavior of yearling brook trout appeared within 2–24 hr at copper concentrations as low as 6–15 μg/liter. Each of these responses appears to be useful for predicting the concentration range of copper likely to have no long-term effects on the species.


Author(s):  
Hayley Lanier ◽  
Lorraine Carver ◽  
Zachary Roehrs ◽  
Meredith Roehrs ◽  
R. Seville

Fires are an important ecological force shaping biological communities in western North America. Fires change landscapes in ways which influence the relative abundance and activities of the organisms occurring in those habitats. Preliminary results from previous work suggest the stage of fire succession may influence individual movements on the landscape. As part of a long-term study of the 1988 Yellowstone fires along the John D. Rockefeller, Jr. Memorial Parkway, we set out to examine these patterns in more detail to (1) test whether the two dominant small mammal species were moving different distances based upon the stage of succession in a particular habitat, and (2) determine the role of habitat complexity, resource types, and species abundance in driving these patterns. Using movement distances from capture-recapture data and fluorescent powder tracking of individuals we compared movement distances and habitat usage between mid-succession and late-succession trapping grids for red-backed voles (Myodes gapperi) and deer mice (Peromyscus maniculatus). The results suggest deer mice, some of the first colonizers to burned habitat, are moving farther than red-backed voles, and move farther in burned habitats than in unburned habitats. Red-backed voles exhibit slightly, but not significantly, longer movements in burned habitats. Powder tracking results suggest habitat complexity, in particular the quantity of coarse woody debris, may partially explain the differences in movement patterns by burn history. These results are important for understanding the long-lasting impacts of fire history on population and community patterns.


2011 ◽  
Vol 68 (12) ◽  
pp. 2057-2063 ◽  
Author(s):  
Shannon L. White ◽  
Charles Gowan ◽  
Kurt D. Fausch ◽  
Josh G. Harris ◽  
W. Carl Saunders

Evaluating the effectiveness of instream structures for increasing trout populations is complicated by a paucity of long-term studies. We report on a study spanning 23 years to assess the effect of installing log weirs on stream habitat and trout abundance. Structures were installed in a randomly selected half of a 500 m study reach in six small Colorado, USA, mountain streams in 1988, and habitat and trout abundance and biomass were measured annually from 1987 to 1994. When five of the streams were resampled in 2009, none of the 53 logs had moved, and all but one were functioning properly. Pool volume remained more than three times higher in treatment sections than in adjacent controls, and mean depth was also greater. Adult trout abundance increased rapidly after structures were installed and remained 53% higher in treatment sections than in controls 21 years later. Effects on juvenile trout abundance were not detected, probably because fry recruitment is strongly influenced by effects of snowmelt runoff, which vary annually among basins. This evaluation shows that instream structures placed in small, stable channels can function for more than two decades when properly installed and can cause long-lasting increases in trout abundance when habitat is limiting.


2009 ◽  
Vol 39 (9) ◽  
pp. 1737-1748 ◽  
Author(s):  
Johan Allmér ◽  
Jan Stenlid ◽  
Anders Dahlberg

Logging residues, consisting of branches and treetops, are increasingly being extracted for biofuel purposes in Fennoscandia, thereby decreasing the availability of fine woody debris (FWD). Little is known about the importance of FWD and litter to fungal diversity, although they constitute the major components of dead organic matter in both managed and natural forests. We investigated the long-term effects of removing logging residue on the saprotrophic fungi community in the litter layer by using an experiment established 25 years ago, comprising stands with and without removal of clear-cut slash. The fungal communities were identified using terminal restriction fragment length polymorphism from standardized baits of wood and needles left in the litter layer for 30 months. A total of 74 fungal taxa were recorded. No differences in species richness or frequency of abundant species were detected between the stands with and without slash removal, suggesting that the extraction of logging residues has a negligible long-term impact on abundant saprotrophic fungi. Twenty-five of the 36 abundant species colonized wood and needles indiscriminately, while 10 species occurred exclusively on wood or needles and only one species mainly on wood. The importance of litter to certain wood-inhabiting fungi may therefore be underrated. The frequent records of Trichaptum abietinum (Dicks.) Ryvarden indicate that wood-inhabiting species may, surprisingly, be found in the litter layer.


1976 ◽  
Vol 33 (8) ◽  
pp. 1731-1741 ◽  
Author(s):  
G. W. Holcombe ◽  
D. A. Benoit ◽  
E. N. Leonard ◽  
J. M. McKim

Exposure of three generations of brook trout (Salvelinus fontinalis) to mean total lead concentrations (0.9–474 μg/liter) showed that all second-generation trout exposed to 235 and 474 μg Pb/liter and 34% of those exposed to 119 μg Pb/liter developed severe spinal deformities (scoliosis). Scoliosis also appeared in 21% of the newly hatched third-generation alevins exposed to 119 μg Pb/liter, and weights of these fish 12 wk after hatch were significantly reduced. Gill, liver, and kidney tissues of first- and second-generation brook trout accumulated the greatest amount of lead. Only small amounts accumulated in the edible muscle. An equilibrium of lead residues was reached in liver and kidney tissue from second-generation fish after 70 wk of exposure, but not in gill tissue. Fish exposed to 119 μg Pb/liter and then placed in uncontaminated control water for 12 wk showed a 70, 78, and 74% loss in micrograms Pb per gram for gill, liver, and kidney tissue, respectively, and a 39, 56, and 35% loss, respectively, in the total micrograms of Pb in the whole tissue. Residue analysis of eggs, alevins, and juveniles showed that lead was accumulated during these life stages. The maximum acceptable toxicant concentration (MATC) for brook trout in water with a hardness of 44 mg/liter (as CaCO3) and a pH of 6.8–7.6 lies between 58 and 119 μg/liter for total lead and between 39 and 84 μg/liter for dissolved lead. The MATC was based on the development of scoliosis in second- and third-generation fish and the reduced growth of 12-wk-old third-generation trout. The 96-h LC50 for brook trout was 4100 μg/liter based on total lead and 3362 μg/liter based on dissolved lead; therefore, the application factor (MATC/96-h LC50) lies between 0.012 and 0.029 for both total and dissolved lead.


2021 ◽  
Author(s):  
Christopher Cooper ◽  
Jacob McDonald ◽  
Eric Starkey

The Southeast Coast Network (SECN) Wadeable Stream Habitat Monitoring Protocol collects data to give park resource managers insight into the status of and trends in stream and near-channel habitat conditions (McDonald et al. 2018a). Wadeable stream monitoring is currently implemented at the five SECN inland parks with wadeable streams. These parks include Horseshoe Bend National Military Park (HOBE), Kennesaw Mountain National Battlefield Park (KEMO), Ocmulgee Mounds National Historical Park (OCMU), Chattahoochee River National Recreation Area (CHAT), and Congaree National Park (CONG). Streams at Congaree National Park chosen for monitoring were specifically targeted for management interest (e.g., upstream development and land use change, visitor use of streams as canoe trails, and potential social walking trail erosion) or to provide a context for similar-sized stream(s) within the park or network (McDonald and Starkey 2018a). The objectives of the SECN wadeable stream habitat monitoring protocol are to: Determine status of upstream watershed characteristics (basin morphology) and trends in land cover that may affect stream habitat, Determine the status of and trends in benthic and near-channel habitat in selected wadeable stream reaches (e.g., bed sediment, geomorphic channel units, and large woody debris), Determine the status of and trends in cross-sectional morphology, longitudinal gradient, and sinuosity of selected wadeable stream reaches. Between June 11 and 14, 2018, data were collected at Congaree National Park to characterize the in-stream and near-channel habitat within stream reaches on Cedar Creek (CONG001, CONG002, and CONG003) and McKenzie Creek (CONG004). These data, along with the analysis of remotely sensed geographic information system (GIS) data, are presented in this report to describe and compare the watershed-, reach-, and transect-scale characteristics of these four stream reaches to each other and to selected similar-sized stream reaches at Ocmulgee Mounds National Historical Park, Kennesaw Mountain National Battlefield Park, and Chattahoochee National Recreation Area. Surveyed stream reaches at Congaree NP were compared to those previously surveyed in other parks in order to provide regional context and aid in interpretation of results. edar Creek’s watershed (CONG001, CONG002, and CONG003) drains nearly 200 square kilometers (77.22 square miles [mi2]) of the Congaree River Valley Terrace complex and upper Coastal Plain to the north of the park (Shelley 2007a, 2007b). Cedar Creek’s watershed has low slope and is covered mainly by forests and grasslands. Cedar Creek is designated an “Outstanding Resource Water” by the state of South Carolina (S.C. Code Regs. 61–68 [2014] and S.C. Code Regs. 61–69 [2012]) from the boundary of the park downstream to Wise Lake. Cedar Creek ‘upstream’ (CONG001) is located just downstream (south) of the park’s Bannister Bridge canoe landing, which is located off Old Bluff Road and south of the confluence with Meyers Creek. Cedar Creek ‘middle’ and Cedar Creek ‘downstream’ (CONG002 and CONG003, respectively) are located downstream of Cedar Creek ‘upstream’ where Cedar Creek flows into the relatively flat backswamp of the Congaree River flood plain. Based on the geomorphic and land cover characteristics of the watershed, monitored reaches on Cedar Creek are likely to flood often and drain slowly. Flooding is more likely at Cedar Creek ‘middle’ and Cedar Creek ‘downstream’ than at Cedar Creek ‘upstream.’ This is due to the higher (relative to CONG001) connectivity between the channels of the lower reaches and their out-of-channel areas. Based on bed sediment characteristics, the heterogeneity of geomorphic channel units (GCUs) within each reach, and the abundance of large woody debris (LWD), in-stream habitat within each of the surveyed reaches on Cedar Creek (CONG001–003) was classified as ‘fair to good.’ Although, there is extensive evidence of animal activity...


Sign in / Sign up

Export Citation Format

Share Document