habitat monitoring
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rio E. Button ◽  
Denham Parker ◽  
Vivienne Coetzee ◽  
Toufiek Samaai ◽  
Ryan M. Palmer ◽  
...  

AbstractUnderstanding how fish associate with habitats across marine landscapes is crucial to developing effective marine spatial planning (MSP) in an expanding and diversifying ocean economy. Globally, anthropogenic pressures impact the barely understood temperate mesophotic ecosystems and South Africa’s remote Amathole shelf is no exception. The Kei and East London region encompass three coastal marine protected areas (MPAs), two of which were recently extended to the shelf-edge. The strong Agulhas current (exceeding 3 m/s), which runs along the narrow shelf exacerbates sampling challenges. For the first time, a remotely operated vehicle (ROV) surveyed fish and their associated habitats across the shelf. Results indicated fish assemblages differed between the two principle sampling areas, and across the shelf. The number of distinct fish assemblages was higher inshore and on the shelf-edge, relative to the mid-shelf. However, the mid-shelf had the highest species richness. Unique visuals of rare Rhinobatos ocellatus (Speckled guitarfish) and shoaling Polyprion americanus (wreckfish) were collected. Visual evidence of rhodolith beds, deep-water lace corals and critically endangered endemic seabreams were ecologically important observations. The ROV enabled in situ sampling without damaging sensitive habitats or extracting fish. This study provided information that supported the Amathole MPA expansions, which extended protection from the coast to beyond the shelf-edge and will guide their management. The data gathered provides baseline information for future benthopelagic fish and habitat monitoring in these new MPAs.


Author(s):  
Marwan Ihsan Shukur

The internet of things (IoT) protocols and regulations are being developed forvarious applications includes: habitat monitoring, machinery control, general health-care, smart-homes and more. A great part of I0T comprised of sensors nodes in connected networks (i.e. sensor networks.). A sensor network is a group of nodes with sensory module and computational elements connected through network interfaces. The most interesting type of sensor networks are wireless sensor networks. The nodes here are connected through wirless interfaces. The shared medium between these nodes, creates different challenges. Congestion in such network is ineavitable. Different models andmethods were proposed to alleviate congestion in wireless sensor networks.This paper presents a semi-cluster directive congestion method that allivatenetwork congestion forpriority-baseddata transmission. The method simprove the network performance by implementing temporary cluster forlow level priority data packets while providing a clear link between highpriority data source node and the network base station. Simulation resultsshow that. The proposed method outperformes ad hocOn-demand distance vector (AODV) reactive procotol approach and priority-based congestion control dynamic clustering (PCCDC) a cluster-based methodin network energy consumption and control packets overhead during network operation.The proposed method also shows comparative improvments in end-to-enddelays versus PCCDC.


2021 ◽  
Vol 58 (1) ◽  
pp. 157-166
Author(s):  
Gianmaria Bonari ◽  
Edy Fantinato ◽  
Lorenzo Lazzaro ◽  
Marta Gaia Sperandii ◽  
Alicia Teresa Rosario Acosta ◽  
...  

Habitat monitoring in Europe is regulated by Article 17 of the Habitats Directive, which suggests the use of typical species to habitat conservation status. Yet, the Directive uses the term “typical” species but does not provide a definition, either for its use in reporting or for its use in impact assessments. To address the issue, an online workshop was organized by the Italian Society for Vegetation Science (SISV) to shed light on the diversity of perspectives regarding the different concepts of typical species, and to discuss the possible implications for habitat monitoring. To this aim, we inquired 73 people with a very different degree of expertise in the field of vegetation science by means of a tailored survey composed of six questions. We analysed the data using Pearson's Chi-squared test to verify that the answers diverged from a random distribution and checked the effect of the degree of experience of the surveyees on the results. We found that most of the surveyees agreed on the use of the phytosociological method for habitat monitoring and of the diagnostic and characteristic species to evaluate the structural and functional conservation status of habitats. With this contribution, we shed light on the meaning of “typical” species in the context of habitat monitoring.


2021 ◽  
Author(s):  
Christopher Cooper ◽  
Jacob McDonald ◽  
Eric Starkey

The Southeast Coast Network (SECN) Wadeable Stream Habitat Monitoring Protocol collects data to give park resource managers insight into the status of and trends in stream and near-channel habitat conditions (McDonald et al. 2018a). Wadeable stream monitoring is currently implemented at the five SECN inland parks with wadeable streams. These parks include Horseshoe Bend National Military Park (HOBE), Kennesaw Mountain National Battlefield Park (KEMO), Ocmulgee Mounds National Historical Park (OCMU), Chattahoochee River National Recreation Area (CHAT), and Congaree National Park (CONG). Streams at Congaree National Park chosen for monitoring were specifically targeted for management interest (e.g., upstream development and land use change, visitor use of streams as canoe trails, and potential social walking trail erosion) or to provide a context for similar-sized stream(s) within the park or network (McDonald and Starkey 2018a). The objectives of the SECN wadeable stream habitat monitoring protocol are to: Determine status of upstream watershed characteristics (basin morphology) and trends in land cover that may affect stream habitat, Determine the status of and trends in benthic and near-channel habitat in selected wadeable stream reaches (e.g., bed sediment, geomorphic channel units, and large woody debris), Determine the status of and trends in cross-sectional morphology, longitudinal gradient, and sinuosity of selected wadeable stream reaches. Between June 11 and 14, 2018, data were collected at Congaree National Park to characterize the in-stream and near-channel habitat within stream reaches on Cedar Creek (CONG001, CONG002, and CONG003) and McKenzie Creek (CONG004). These data, along with the analysis of remotely sensed geographic information system (GIS) data, are presented in this report to describe and compare the watershed-, reach-, and transect-scale characteristics of these four stream reaches to each other and to selected similar-sized stream reaches at Ocmulgee Mounds National Historical Park, Kennesaw Mountain National Battlefield Park, and Chattahoochee National Recreation Area. Surveyed stream reaches at Congaree NP were compared to those previously surveyed in other parks in order to provide regional context and aid in interpretation of results. edar Creek’s watershed (CONG001, CONG002, and CONG003) drains nearly 200 square kilometers (77.22 square miles [mi2]) of the Congaree River Valley Terrace complex and upper Coastal Plain to the north of the park (Shelley 2007a, 2007b). Cedar Creek’s watershed has low slope and is covered mainly by forests and grasslands. Cedar Creek is designated an “Outstanding Resource Water” by the state of South Carolina (S.C. Code Regs. 61–68 [2014] and S.C. Code Regs. 61–69 [2012]) from the boundary of the park downstream to Wise Lake. Cedar Creek ‘upstream’ (CONG001) is located just downstream (south) of the park’s Bannister Bridge canoe landing, which is located off Old Bluff Road and south of the confluence with Meyers Creek. Cedar Creek ‘middle’ and Cedar Creek ‘downstream’ (CONG002 and CONG003, respectively) are located downstream of Cedar Creek ‘upstream’ where Cedar Creek flows into the relatively flat backswamp of the Congaree River flood plain. Based on the geomorphic and land cover characteristics of the watershed, monitored reaches on Cedar Creek are likely to flood often and drain slowly. Flooding is more likely at Cedar Creek ‘middle’ and Cedar Creek ‘downstream’ than at Cedar Creek ‘upstream.’ This is due to the higher (relative to CONG001) connectivity between the channels of the lower reaches and their out-of-channel areas. Based on bed sediment characteristics, the heterogeneity of geomorphic channel units (GCUs) within each reach, and the abundance of large woody debris (LWD), in-stream habitat within each of the surveyed reaches on Cedar Creek (CONG001–003) was classified as ‘fair to good.’ Although, there is extensive evidence of animal activity...


Author(s):  
Nitin Mittal

Wireless Sensor Network (WSN) is an emerging technology with potential applications in the field of habitat monitoring and industrial applications. Sensors monitor changes in an environment's physical attribute such as temperature, and observe the data collected and forward it to the base station (BS). Mostly these sensors are unattended, and their limited battery life makes energy a valuable resource that has to be used wisely. For the collection of information, the sensor network must be maintained for a longer duration of time in an energy-efficient manner.Therefore, designing protocols that prolong the life of the network and which are energy-efficient is incessantly fascinating. This paper proposed a protocol referred to as the zone-based energy-efficient hierarchical clustering (ZEEHC) protocol that divides the network into small zones and increases network lifetime. In order to achieve minimum energy consumption, multi-hop contact is implemented between ZHs - CHs -BS. The results further reveal that the proposed protocol significantly outperforms existing algorithms in terms of energy optimization and system lifetime.


2021 ◽  
Vol 7 (1) ◽  
pp. 10580-10597
Author(s):  
César Albertoda Silva ◽  
Hemerson Pistori ◽  
Ariadne Barbosa Gonçalves ◽  
Linnyer Beatrys Ruiz Aylon
Keyword(s):  

2020 ◽  
Author(s):  
Julian Oeser ◽  
Marco Heurich ◽  
Cornelius Senf ◽  
Dirk Pflugmacher ◽  
Tobias Kuemmerle

Sign in / Sign up

Export Citation Format

Share Document