scholarly journals Prioritization of Vulnerable Species Under Scenarios of Anthropogenic-Driven Change in Georgia's Coastal Plain

Author(s):  
Elizabeth A. Paulukonis ◽  
Brian A. Crawford ◽  
John C. Maerz ◽  
Seth J. Wenger ◽  
Nate P. Nibbelink

Abstract Effective management of wildlife populations benefits from an understanding of the long-term vulnerability of species to anthropogenic stressors. Exposure to potential habitat change is one measure of vulnerability that wildlife managers often use to assess and prioritize individual species or groups of species for resource allocation or direct management actions. We used species distribution models for 15 species occurring in the coastal plain ecoregion of Georgia to estimate the current amount and distribution of potential habitat and then predict exposure to changes in habitat due to inundation from sea level rise (using the Sea Level Affecting Marshes model) and urban growth (using the Slope Land-use Excluded Urban Topology Hillshade Growth model) for four future time points. Our results predict that all focal species were likely to experience some exposure to habitat change from either sea level rise or urbanization, but few species will experience high exposure to change from both stressors. Species that use salt marsh or beach habitats had the highest predicted exposure from sea level rise (25–69%), while species that use more inland habitats had the highest predicted exposure to urban growth (10–20%). Our models are a resource for managers considering tradeoffs between prioritization schemes under two future stressors. Results suggest that managers may need to prioritize species (or their habitats) based on the predicted magnitude of habitat loss, while also contextualizing prioritization with respect to the current amount of available protected habitat and species global vulnerability.

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3090
Author(s):  
Sergio B. Jiménez-Hernández ◽  
Ofelia Pérez Montero ◽  
Eustorgio Meza ◽  
Yunior R. Velázquez ◽  
Juan R. Castellanos ◽  
...  

This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.


The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
Samuel G Roberts ◽  
Rebecca A Longenecker ◽  
Matthew A Etterson ◽  
Chris S Elphick ◽  
Brian J Olsen ◽  
...  

Abstract Globally limited to 45,000 km2, salt marshes and their endemic species are threatened by numerous anthropogenic influences, including sea-level rise and predator pressure on survival and nesting success. Along the Atlantic coast of North America, Seaside (Ammospiza maritima) and Saltmarsh (A. caudacuta) sparrows are endemic to salt marshes, with Saltmarsh Sparrows declining by 9% annually. Because vital rates and factors affecting population persistence vary for both species, local estimates are necessary to best predict population persistence in response to management actions. We used a metapopulation model to estimate the population viability of the breeding Seaside and Saltmarsh sparrow populations in coastal New Jersey over a 42-yr period. We incorporated empirical data on the vital rates and abundances of these populations and simulated the effect of low (0.35 m) and high (0.75 m) levels of sea-level rise. We found that the Seaside Sparrow population persisted under both sea-level rise scenarios; however, the Saltmarsh Sparrow population reached a quasi-extinction threshold within 20 yr. Using the same framework, we modeled potential management scenarios that could increase the persistence probability of Saltmarsh Sparrows and found that fecundity and juvenile survival rates will require at least a 15% concurrent increase for the local population to persist beyond 2050. Future field research should evaluate the feasibility and effectiveness of management actions, such as predator control, for increasing Saltmarsh Sparrow vital rates in order to maintain the species in coastal New Jersey.


2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


Author(s):  
Ashley M. Smallwood ◽  
Albert C. Goodyear ◽  
Thomas A. Jennings ◽  
Douglas A. Sain

The state of South Carolina is examined by the physiographic provinces of Mountains, Piedmont, and Coastal Plain using established Paleoindian projectile point types and their geographic distributions by raw materials. Foraging ranges are reconstructed. There is a substantial drop in post-Clovis point frequencies, as seen elsewhere in the Southeast, with a great increase by Dalton times. Younger Dryas age environmental changes are reviewed, with late Pleistocene flora and fauna changes noted. Starting in Dalton times, sea level rise appears to have affected settlement strategies due to the inundation of the primary resource habitats of the Coastal Plain. The Piedmont Transhumance hypothesis is offered as an explanation of these changes.


2021 ◽  
Author(s):  
Malay Pramanik ◽  
Sylvia Szabo ◽  
Indrajit Pal ◽  
Parmeshwar Udmale

<p><strong>Abstract:</strong></p><p>Climate change is one of the most pressing challenges of the 21st century and is likely to increase migration of the marginal communities from the coastal areas throughout the world. It is projected that 200 million people worldwide will be climate refugees by 2050. Owing to high exposure and poor adaptive capacity, low-lying coastal areas and islands in developing countries are the most vulnerable to the impacts of climate change. Therefore, it is imperative to understand how climate change is affecting the livelihoods, in turn, driving the migration in these regions.</p><p>The present study focuses on the Sundarbans region located along the coastal belt of West Bengal (India) as a part of Ganga-Brahmaputra mega delta. It is also a home of 4.7 million poor people, who earn below US$10 per month. The region is an exceedingly flat, low-lying, alluvial plain highly exposed to sea level rise, storm surge, tornedoes, cyclonic activity, riverbank erosion, salinization and subsequent mangrove depletion. Due to the climatic hazards, the basic livelihoods are at risk and their strategies towards livelihood collection remains largely unknown. Therefore, the present study provides insights into the nexus among climate stimuli, livelihood risks, and households’ strategies in the region, with special emphasize on climate change.</p><p>The study is based on field survey of 150 respondents representing migrant and non-migrant coastal communities from Gosaba, Basanti and Hingalganj block using structured questionnaires. More than 70% of respondents stated that livelihood risks mainly from climate change impacts as the major reason for inter-state migration, which is the main source of income supporting livelihood in the region. This environmental displacement in the Sundarbans region symbolizes the failure of adaptation to mitigate climate change induced sea level rise increasing the exposure to coastal flooding and storm surges, salinization, and erosion.  This study discusses potential mitigation strategies to combat the impacts of climate change on livelihoods of the coastal communities in the region.</p>


2017 ◽  
Vol 198 ◽  
pp. 597-609 ◽  
Author(s):  
Pietro Patrizio Ciro Aucelli ◽  
Gianluigi Di Paola ◽  
Pietro Incontri ◽  
Angela Rizzo ◽  
Giuseppe Vilardo ◽  
...  

2013 ◽  
Vol 17 (1) ◽  
pp. 379-394 ◽  
Author(s):  
H. T. L. Huong ◽  
A. Pathirana

Abstract. Urban development increases flood risk in cities due to local changes in hydrological and hydrometeorological conditions that increase flood hazard, as well as to urban concentrations that increase the vulnerability. The relationship between the increasing urban runoff and flooding due to increased imperviousness is better perceived than that between the cyclic impact of urban growth and the urban rainfall via microclimatic changes. The large-scale, global impacts due to climate variability and change could compound these risks. We present the case of a typical third world city – Can Tho (the biggest city in Mekong River Delta, Vietnam) – faced with multiple future challenges, namely: (i) the likely effect of climate change-driven sea level rise, (ii) an expected increase of river runoff due to climate change as estimated by the Vietnamese government, (iii) increased urban runoff driven by imperviousness, and (iv) enhancement of extreme rainfall due to urban growth-driven, microclimatic change (urban heat islands). A set of model simulations were used to construct future scenarios, combining these influences. Urban growth of the city was projected up to year 2100 based on historical growth patterns, using a land use simulation model (Dinamica EGO). A dynamic limited-area atmospheric model (WRF), coupled with a detailed land surface model with vegetation parameterization (Noah LSM), was employed in controlled numerical experiments to estimate the anticipated changes in extreme rainfall patterns due to urban heat island effect. Finally, a 1-D/2-D coupled urban-drainage/flooding model (SWMM-Brezo) was used to simulate storm-sewer surcharge and surface inundation to establish the increase in the flood hazard resulting from the changes. The results show that under the combined scenario of significant change in river level (due to climate-driven sea level rise and increase of flow in the Mekong) and "business as usual" urbanization, the flooding of Can Tho could increase significantly. The worst case may occur if a sea level rise of 100 cm and the flow from upstream happen together with high-development scenarios. The relative contribution of causes of flooding are significantly different at various locations; therefore, detailed research on adaptation are necessary for future investments to be effective.


Sign in / Sign up

Export Citation Format

Share Document