EDZ characterization with surface wave analysis: an experimental and numerical study for defining feasibility in the context of the Tournemire platform (France)

2012 ◽  
Vol 10 (5) ◽  
pp. 401-411 ◽  
Author(s):  
Donatienne Leparoux ◽  
Philippe Côte ◽  
Céline Gélis
2013 ◽  
Vol 11 (4) ◽  
pp. 435-448 ◽  
Author(s):  
L.A. Konstantaki ◽  
S. Carpentier ◽  
F. Garofalo ◽  
P. Bergamo ◽  
L.V. Socco

2020 ◽  
pp. 108128652096564
Author(s):  
Mriganka Shekhar Chaki ◽  
Victor A Eremeyev ◽  
Abhishek K Singh

In this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity. Dispersion equations for both models have been obtained in algebraic form for two types of anti-plane wave, i.e. a Love-type wave and a new type of surface wave (due to micropolarity). The angular frequency and phase velocity of anti-plane waves have been analysed through a numerical study within cut-off frequencies. The obtained results may find suitable applications in thin film technology, non-destructive analysis or biomechanics, where the models discussed here may serve as theoretical frameworks for similar types of phenomena.


1996 ◽  
Vol 258 (1-4) ◽  
pp. 171-193 ◽  
Author(s):  
P. Teves-Costa ◽  
L. Matias ◽  
C.S. Oliveira ◽  
L.A. Mendes-Victor
Keyword(s):  

2021 ◽  
Author(s):  
Akash Kharita ◽  
Sagarika Mukhopadhyay

<p>The surface wave phase and group velocities are estimated by dividing the epicentral distance by phase and group travel times respectively in all the available methods, this is based on the assumptions that (1) surface waves originate at the epicentre and (2) the travel time of the particular group or phase of the surface wave is equal to its arrival time to the station minus the origin time of the causative earthquake; However, both assumptions are wrong since surface waves generate at some horizontal distance away from the epicentre. We calculated the actual horizontal distance from the focus at which they generate and assessed the errors caused in the estimation of group and phase velocities by the aforementioned assumptions in a simple isotropic single layered homogeneous half space crustal model using the example of the fundamental mode Love wave. We took the receiver locations in the epicentral distance range of 100-1000 km, as used in the regional surface wave analysis, varied the source depth from 0 to 35 Km with a step size of 5 km and did the forward modelling to calculate the arrival time of Love wave phases at each receiver location. The phase and group velocities are then estimated using the above assumptions and are compared with the actual values of the velocities given by Love wave dispersion equation. We observed that the velocities are underestimated and the errors are found to be; decreasing linearly with focal depth, decreasing inversely with the epicentral distance and increasing parabolically with the time period. We also derived empirical formulas using MATLAB curve fitting toolbox that will give percentage errors for any realistic combination of epicentral distance, time period and depths of earthquake and thickness of layer in this model. The errors are found to be more than 5% for all epicentral distances lesser than 500 km, for all focal depths and time periods indicating that it is not safe to do regional surface wave analysis for epicentral distances lesser than 500 km without incurring significant errors. To the best of our knowledge, the study is first of its kind in assessing such errors.</p>


2019 ◽  
Vol 33 (3) ◽  
pp. 236-244
Author(s):  
Ju-Han Lee ◽  
Kwan-Woo Kim ◽  
Kwang-Jun Paik ◽  
Won-Cheol Koo ◽  
Yeong-Gyu Kim

Author(s):  
Laura Valentina Socco ◽  
Paolo Bergamo ◽  
Daniele Boiero
Keyword(s):  

2019 ◽  
Vol 154 ◽  
pp. 103557
Author(s):  
Navid Tahvildari ◽  
Elham Sharifineyestani

Author(s):  
A. Braathen ◽  
J. Cook ◽  
A. C. Damhaug ◽  
M. T. Rahman ◽  
O. Sævareid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document