The Impact of Gas Compositions on the Intensity of Positive Coupling Effect in Gas Condensate Reservoirs

Author(s):  
A. Gholami ◽  
A. Hashemi ◽  
S.M. Vaziri
2009 ◽  
Vol 12 (04) ◽  
pp. 576-585 ◽  
Author(s):  
Jitendra Mohan ◽  
Gary A. Pope ◽  
Mukul M. Sharma

Summary Hydraulic fracturing is a common way to improve productivity of gas-condensate wells. Previous simulation studies have predicted much larger increases in well productivity than have been actually observed in the field. This paper shows the large impact of non-Darcy flow and condensate accumulation on the productivity of a hydraulically fractured gas-condensate well. Two-level local-grid refinement was used so that very small gridblocks corresponding to actual fracture width could be simulated. The actual fracture width must be used to accurately model non-Darcy flow. An unrealistically large fracture width in the simulations underestimates the effect of non-Darcy flow in hydraulic fractures. Various other factors governing the productivity improvement such as fracture length, fracture conductivity, well flow rates, and reservoir parameters have been analyzed. Productivity improvements were found to be overestimated by a factor as high as three, if non-Darcy flow was neglected. Results are presented that show the impact of condensate buildup on long-term productivity of wells in both rich and lean gas-condensate reservoirs. Introduction A significant decline in productivity of gas-condensate wells has been observed, resulting from a phenomenon called condensate blocking. Pressure gradients caused by fluid flow in the reservoir are greatest near the production well. As the pressure drops below the dewpoint pressure, liquid drops out and condensate accumulates near the well. This buildup of condensate is referred to as a condensate bank. The condensate continues to accumulate until a steady-state two-phase flow of condensate and gas is achieved. This condensate buildup decreases the relative permeability to gas, thereby causing a decline in the well productivity. Afidick et al. (1994) studied the Arun field in Indonesia, which is one of the largest gas-condensate reservoirs in the world. They concluded that a significant loss in productivity of the reservoir after 10 years of production was caused by condensate blockage. They found that condensate accumulation caused well productivity to decline by approximately 50%, even for this very lean gas. Boom et al. (1996) showed that even for a lean gas (e.g., less than 1% liquid dropout) a relatively high liquid saturation can build up in the near-wellbore region. Liquid saturations near the well can reach 50 to 60% under pseudosteady-state flow of gas and condensate (Cable et al. 2000; Henderson et al. 1998). Hydraulic fracturing of wells is a common practice to improve productivity of gas-condensate reservoirs. Modeling of gas-condensate wells with a hydraulic fracture requires taking into account non-Darcy flow. Gas velocity inside the fracture is three to four orders of magnitude higher than that in the matrix. Use of Darcy's law to model this flow can overestimate the productivity improvement. Therefore, it is necessary to use Forchheimer's equation to model this flow with an appropriate non-Darcy coefficient that takes into account the gas-relative permeability and water saturation.


2019 ◽  
Vol 11 (10) ◽  
pp. 2838 ◽  
Author(s):  
Amjed M. Hassan ◽  
Mohamed A. Mahmoud ◽  
Abdulaziz A. Al-Majed ◽  
Dhafer Al-Shehri ◽  
Ayman R. Al-Nakhli ◽  
...  

Unconventional reservoirs have shown tremendous potential for energy supply for long-term applications. However, great challenges are associated with hydrocarbon production from these reservoirs. Recently, injection of thermochemical fluids has been introduced as a new environmentally friendly and cost-effective chemical for improving hydrocarbon production. This research aims to improve gas production from gas condensate reservoirs using environmentally friendly chemicals. Further, the impact of thermochemical treatment on changing the pore size distribution is studied. Several experiments were conducted, including chemical injection, routine core analysis, and nuclear magnetic resonance (NMR) measurements. The impact of thermochemical treatment in sustaining gas production from a tight gas reservoir was quantified. This study demonstrates that thermochemical treatment can create different types of fractures (single or multistaged fractures) based on the injection method. Thermochemical treatment can increase absolute permeability up to 500%, reduce capillary pressure by 57%, remove the accumulated liquids, and improve gas relative permeability by a factor of 1.2. The findings of this study can help to design a better thermochemical treatment for improving gas recovery. This study showed that thermochemical treatment is an effective method for sustaining gas production from tight gas reservoirs.


2005 ◽  
Author(s):  
Gustavo Adolfo Carvajal ◽  
Ali Danesh ◽  
Mahmoud Jamiolahmady ◽  
Mehran Sohrabi

2007 ◽  
Vol 10 (03) ◽  
pp. 251-259 ◽  
Author(s):  
C. Shah Kabir ◽  
Sheldon Burt Gorell ◽  
Maria E. Portillo ◽  
A. Stan Cullick

Summary Well-developed methodology exists for handling uncertainty for a single reservoir. However, development of multiple fields presents a significant challenge when uncertainty in a large number of variables, such as gas in place and liquid yield, occur in each reservoir. Some of the challenges stem from our need to forecast the system behavior involving a coupled reservoir/wellbore/surface (CRWS) network for the entire spectrum of variables so that facilities can be designed for the range of fluid composition and throughput. Of course, assessing well count and sequencing well drills are some of the important objectives. This paper describes probabilistic production forecasting with a compositional CRWS network model for nine reservoirs involved in delivering gas supply to a liquefied natural gas (LNG) plant in Nigeria. Our main objective was to use an economic indicator to select the optimal design of two main pipelines, each transporting 200 and 300 MMscf/D from the two production platforms, located 15 and 5 km, respectively, from the processing platform. Rate and cumulative profiles showed that sustained deliverability of gas could be realized for approximately 11 years before the decline occurred in high-permeability reservoirs. In other words, uncertainty in gas in place did not surface during the plateau period, only during the decline period lasting another 5 years after the first 11. In contrast, the liquid rates exhibited a large uncertainty band throughout, a direct manifestation of the condensate yield issue. The uncertainty band among each of the 12 components aided facilities design. Differences in net present value (NPV) and discounted profitability index (DPI) were used as discriminators for discerning optimal pipe size from the standpoint of project economics. Introduction In recent years, probabilistic forecasting has gained popularity and has become the preferred approach when assessing the value of a project, given the uncertainty of many input variables. Uncertainties arise because both static and dynamic variables are ascertained from rather small volumetric samples of a reservoir and subsequent key variables are estimated from interpretations. Systematic approaches have emerged to account for uncertainty of both static and dynamic variables involving statistical approaches. These methods have been detailed elsewhere (Damsleth et al. 1992; Friedmann et al. 2003; Kabir et al. 2004) for a single reservoir. However, very few studies exist in which production is sought from multiple reservoirs with uncertainty associated with each one of them. Cullick et al. (2004) and Narayanan et al. (2003) have presented case studies of production forecasting under uncertainty for multiple fields. In their studies, flow-simulation tools were integrated with economic evaluation tools and the Monte Carlo (MC) algorithm. Optimization was sought for an objective function (NPV, for instance) honoring various constraints. The objective of this study was to investigate the impact of uncertainty in input variables on the production forecast for systems consisting of multiple gas/condensate reservoirs, honoring wellbore constraints. We studied multiple reservoirs with multiple wells producing independently. The complexity arises because of the interactions through the common flowline system. The wellbore model was coupled with the reservoir model to honor wellbore constraints. The surface network interfaced with disparate wells through producing rules or constraints. Some of the producing rules included production upper limits to avoid erosional velocity and meeting CO2 production constraints because blending of various streams occurs. In this study, the types of uncertainty considered are in-place volume, condensate yield, capital costs, and operating costs. We segmented this study into two phases. In Phase 1, we used an analytic simulator to generate the pressure and production forecasts for dry-gas reservoirs, coupled with a simple economic model but without the surface network. The intrinsic idea was to establish well count with a simplistic approach on a spreadsheet. In Phase 2, a CRWS model allowed us to discern the pipe diameter of two main trunk lines transporting gas/condensate fluids by use of incremental economics.


2021 ◽  
Vol 11 (7) ◽  
pp. 2919
Author(s):  
Massamba Fall ◽  
Zhengguo Gao ◽  
Becaye Cissokho Ndiaye

A pile foundation is commonly adopted for transferring superstructure loads into the ground in weaker soil. They diminish the settlement of the infrastructure and augment the soil-bearing capacity. This paper emphases the pile-driving effect on an existing adjacent cylindrical and semi-tapered pile. Driving a three-dimensional pile into the ground is fruitfully accomplished by combining the arbitrary Lagrangian–Eulerian (ALE) adaptive mesh and element deletion methods without adopting any assumptions that would simplify the simulation. Axial forces, bending moment, and lateral displacement were studied in the neighboring already-installed pile. An investigation was made into some factors affecting the forces and bending moment, such as pile spacing and the shape of the already-installed pile (cylindrical, tapered, or semi-tapered). An important response was observed in the impact of the driven pile on the nearby existing one, the bending moment and axial forces were not negligible, and when the pile was loaded, it was recommended to consider the coupling effect. Moreover, the adjacent semi-tapered pile was subjected to less axial and lateral movement than the cylindrical one with the same length and volume for taper angles smaller than 1.0°, and vice versa for taper angles greater than 1.4°.


2011 ◽  
Author(s):  
Anton Yushkov ◽  
A.S. Romanov ◽  
I.R. R. Mukminov ◽  
A.E. Ignatiev ◽  
S.V. Romashkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document