Development and Application of a Global Offshore Oil Seeps Database Using Satellite Radar Data

Author(s):  
M. Hall
2018 ◽  
Vol 58 (4) ◽  
pp. 537-551 ◽  
Author(s):  
I. A. Bychkova ◽  
V. G. Smirnov

Te methods of satellite monitoring of dangerous ice formations, namely icebergs in the Arctic seas, representing a threat to the safety of navigation and economic activity on the Arctic shelf are considered. Te main objective of the research is to develop methods for detecting icebergs using satellite radar data and high space resolution images in the visible spectral range. Te developed method of iceberg detection is based on statistical criteria for fnding gradient zones in the analysis of two-dimensional felds of satellite images. Te algorithms of the iceberg detection, the procedure of the false target identifcation, and determination the horizontal dimensions of the icebergs and their location are described. Examples of iceberg detection using satellite information with high space resolution obtained from Sentinel-1 and Landsat-8 satellites are given. To assess the iceberg threat, we propose to use a model of their drif, one of the input parameters of which is the size of the detected objects. Tree possible situations of observation of icebergs are identifed, namely, the «status» state of objects: icebergs on open water; icebergs in drifing ice; and icebergs in the fast ice. At the same time, in each of these situations, the iceberg can be grounded, that prevents its moving. Specifc features of the iceberg monitoring at various «status» states of them are considered. Te «status» state of the iceberg is also taken into account when assessing the degree of danger of the detected object. Te use of iceberg detection techniques based on satellite radar data and visible range images is illustrated by results of monitoring the coastal areas of the Severnaya Zemlya archipelago. Te approaches proposed to detect icebergs from satellite data allow improving the quality and efciency of service for a wide number of users with ensuring the efciency and safety of Arctic navigation and activities on the Arctic shelf.


Author(s):  
V. G. SMIRNOV ◽  
◽  
I. A. BYCHKOVA ◽  
N. YU. ZAKHVATKINA ◽  
S. V. MIKHAL’TSEVA ◽  
...  

The paper describes the experience of using routine satellite radar data to estimate the length of the ice-free period in the Northern Sea Route using a neural network method for the ice cover classification. An earlier onset of melt and a later freezing of ice in the Russian Arctic seas as compared to long-term dates is confirmed.


2019 ◽  
Vol 11 (3) ◽  
pp. 884 ◽  
Author(s):  
Jan Blachowski ◽  
Anna Kopec ◽  
Wojciech Milczarek ◽  
Karolina Owczarz

The issue of monitoring surface motions in post-mining areas in Europe is important due to the fact that a significant number of post-mining areas lie in highly-urbanized and densely-populated regions. Examples can be found in: Belgium, the Czech Republic, France, Germany, the Netherlands, Spain, the United Kingdom, as well as the subject of this study, the Polish Walbrzych Hard Coal Basin. Studies of abandoned coal fields show that surface deformations in post-mining areas occur even several dozen years after the end of underground coal extraction, posing a threat to new development of these areas. In the case of the Walbrzych area, fragmentary, geodetic measurements indicate activity of the surface in the post-mining period (from 1995 onward). In this work, we aimed at determining the evolution of surface deformations in time during the first 15 years after the end of mining, i.e., the 1995–2010 period using ERS 1/2 and Envisat satellite radar data. Satellite radar data from European Space Agency missions are the only source of information on historical surface movements and provide spatial coverage of the entirety of the coal fields. In addition, we attempted to analyze the relationship of the ground deformations with hydrogeological changes and geological and mining data. Three distinct stages of ground movements were identified in the study. The ground motions (LOS (Line Of Sight)) determined with the PSInSAR (Persistent Scatterer Interferometry) method indicate uplift of the surface of up to +8 mm/a in the first period (until 2002). The extent and rate of this motion was congruent with the process of underground water table restoration in separate water basins associated with three neighboring coal fields. In the second period, after the stabilization of the underground water table, the surface remained active, as indicated by local subsidence (up to −5 mm/a) and uplift (up to +5 mm/a) zones. We hypothesize that this surface activity is the result of ground reaction disturbed by long-term shallow and deep mining. The third stage is characterized by gradual stabilization and decreasing deformations of the surface. The results accentuate the complexity of ground motion processes in post-mining areas, the advantages of the satellite radar technique for historical studies, and provide information for authorities responsible for new development of such areas, e.g., regarding potential flood zones caused by restoration of groundwater table in subsided areas.


2010 ◽  
Author(s):  
Andrea Bagliani ◽  
Alessandro Mosconi ◽  
Daniele Marzorati ◽  
Antonio Cremonesi ◽  
Alessandro Ferretti ◽  
...  

2011 ◽  
Vol 268-270 ◽  
pp. 1934-1939
Author(s):  
Kun Chao Lei ◽  
Hui Li Gong ◽  
Xiao Juan Li ◽  
Bei Bei Chen ◽  
Ji Wei Li ◽  
...  

Land subsidence in Cangzhou of the North China Plain, has been an ongoing problem for the past four decades (since the later 1970s). With the development of new synthetic aperture radar(SAR)sensors and interferometric synthetic aperture radar(InSAR) techniques, the application of satellite Radar data have enhanced capabilities to detect and monitor ground displacements with centimeter to millimeter precision at greater spatial detail and higher temporal resolution. We use Permanent Scatterers interferometric synthetic aperture radar(PS-InSAR)technology (Hooper, A.2004) to detect and measure ground movement in this area(from2004 to 2007). Results of the cangzhou region study are reported and the utility of the InSAR methodology is discussed.


2003 ◽  
Vol 49 (165) ◽  
pp. 210-222 ◽  
Author(s):  
Johan Jacob Mohr ◽  
Niels Reeh ◽  
Søren Nørvang Madsen

AbstractWe present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar dataset with ascending- and descending-orbit data covering Storstrømmen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness, and approximations of the ice-flow model. The example glacier is now building up following a surge. The analysis shows that in the case study presented the errors are small enough to justify the use of both the estimated surface-parallel flow term of the vertical velocity and the estimated FD term of the vertical velocity.


2014 ◽  
Vol 2 ◽  
Author(s):  
Jacqueline T. Salzer ◽  
Mehdi Nikkhoo ◽  
Thomas R. Walter ◽  
Henriette Sudhaus ◽  
Gabriel Reyes-Dávila ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document