Seismic Fault Damage Zone Characterisation for Reservoir Modelling Using Advanced Attribute Analysis

Author(s):  
C. Botter ◽  
A. Champion
2012 ◽  
Vol 35 ◽  
pp. 64-77 ◽  
Author(s):  
Hideo Takagi ◽  
Kazuhiro Takahashi ◽  
Koji Shimada ◽  
Kosuke Tsutsui ◽  
Reiko Miura ◽  
...  

2001 ◽  
Vol 34 (4) ◽  
pp. 1643
Author(s):  
A. Kostakioti ◽  
P. Xypolias ◽  
S. Kokkalas ◽  
T. Doutsos

In this study, we present structural, fracture orientation and fracture density (FD) data in order toquantify the deformation pattern of a damage zone that form around the slip plane of a large scalethrust fault which is located on the Ionian zone (External Hellenides) in northwestern Greece. Structuralanalysis showed at least two major deformation stages as indicated by the presence of refolding,backthrusting and break-back faulting. The fracture orientation analysis revealed three mainfracture systems, a dominant conjugate fracture system which is perpendicular to the transport direction(NW-to NNW trending sets), a conjugate fracture system trending parallel to the transport direction(ENE-trending conjugate sets) and a third diagonal conjugate fracture system (WNW andNNE trending sets). Resulting fracture density-distance diagrams display a decrease of total fracturedensity away from the studied fault, which is largely heterogeneous and irregular on both footwalland hanging wall. The conjugate fracture system trending perpendicular to the transport directionhas the dominant contribution to the accumulation of total fracture density. Based on theseresults we suggest that the observed heterogeneous and irregular distribution of fracture densityfashioned during the second deformation stage and is attributed to the formation of backthrusts andbreak-back thrust faults.


2010 ◽  
Vol 32 (6) ◽  
pp. 766-780 ◽  
Author(s):  
Paul R. Riley ◽  
Laurel B. Goodwin ◽  
Claudia J. Lewis

Author(s):  
L.M. Houser ◽  
A.K. Ault ◽  
D.L. Newell ◽  
J.P. Evans ◽  
F‐A. Shen ◽  
...  

Author(s):  
Jorge Jara ◽  
Lucile Bruhat ◽  
Marion Y. Thomas ◽  
Solène L. Antoine ◽  
Kurama Okubo ◽  
...  

Most earthquake ruptures propagate at speeds below the shear wave velocity within the crust, but in some rare cases, ruptures reach supershear speeds. The physics underlying the transition of natural subshear earthquakes to supershear ones is currently not fully understood. Most observational studies of supershear earthquakes have focused on determining which fault segments sustain fully grown supershear ruptures. Experimentally cross-validated numerical models have identified some of the key ingredients required to trigger a transition to supershear speed. However, the conditions for such a transition in nature are still unclear, including the precise location of this transition. In this work, we provide theoretical and numerical insights to identify the precise location of such a transition in nature. We use fracture mechanics arguments with multiple numerical models to identify the signature of supershear transition in coseismic off-fault damage. We then cross-validate this signature with high-resolution observations of fault zone width and early aftershock distributions. We confirm that the location of the transition from subshear to supershear speed is characterized by a decrease in the width of the coseismic off-fault damage zone. We thus help refine the precise location of such a transition for natural supershear earthquakes.


2020 ◽  
Vol 39 (10) ◽  
pp. 727-733
Author(s):  
Haibin Di ◽  
Leigh Truelove ◽  
Cen Li ◽  
Aria Abubakar

Accurate mapping of structural faults and stratigraphic sequences is essential to the success of subsurface interpretation, geologic modeling, reservoir characterization, stress history analysis, and resource recovery estimation. In the past decades, manual interpretation assisted by computational tools — i.e., seismic attribute analysis — has been commonly used to deliver the most reliable seismic interpretation. Because of the dramatic increase in seismic data size, the efficiency of this process is challenged. The process has also become overly time-intensive and subject to bias from seismic interpreters. In this study, we implement deep convolutional neural networks (CNNs) for automating the interpretation of faults and stratigraphies on the Opunake-3D seismic data set over the Taranaki Basin of New Zealand. In general, both the fault and stratigraphy interpretation are formulated as problems of image segmentation, and each workflow integrates two deep CNNs. Their specific implementation varies in the following three aspects. First, the fault detection is binary, whereas the stratigraphy interpretation targets multiple classes depending on the sequences of interest to seismic interpreters. Second, while the fault CNN utilizes only the seismic amplitude for its learning, the stratigraphy CNN additionally utilizes the fault probability to serve as a structural constraint on the near-fault zones. Third and more innovatively, for enhancing the lateral consistency and reducing artifacts of machine prediction, the fault workflow incorporates a component of horizontal fault grouping, while the stratigraphy workflow incorporates a component of feature self-learning of a seismic data set. With seven of 765 inlines and 23 of 2233 crosslines manually annotated, which is only about 1% of the available seismic data, the fault and four sequences are well interpreted throughout the entire seismic survey. The results not only match the seismic images, but more importantly they support the graben structure as documented in the Taranaki Basin.


2021 ◽  
pp. 105409
Author(s):  
M.E. Silva ◽  
F.C.C. Nogueira ◽  
Y.A.R. Pérez ◽  
D.L. Vasconcelos ◽  
R.C. Stohler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document