Innovative Simultaneous Source Separation of High-Density Land Data - A Case Study from Prudhoe Bay, Alaska

Author(s):  
P. Bilsby ◽  
A. Clark ◽  
G. Busanello ◽  
Z. Jackson ◽  
G. Alexander
First Break ◽  
2014 ◽  
Vol 32 (1) ◽  
Author(s):  
F. Xiao ◽  
J. Yang ◽  
B. Liang ◽  
M. Zhang ◽  
R. Li ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 100232
Author(s):  
Federico Cuppi ◽  
Valeria Vignali ◽  
Claudio Lantieri ◽  
Luca Rapagnà ◽  
Nicola Dimola ◽  
...  

2021 ◽  
Author(s):  
Sufyan Deshmukh ◽  
Marcelo Dourado Motta ◽  
Sameer Prabhudesai ◽  
Mehul Patil ◽  
Yogesh Kumar ◽  
...  

Abstract A unique invert emulsion fluid (IEF) weighted up with treated micronized weighting agent (MWA) slurries has been developed and successfully implemented in the field as a completion and testing fluid. The utilization of this unique IEF by design allowed the fluid properties to be lower on viscosity and superior suspension characteristics, which allowed for thermally stable fluid and provided excellent downhole hydraulics performance. Much of the earlier development and deployment of this type of IEF was focused on drilling for sections in narrow mud weight and fracture gradient windows, coiled tubing operations, managed pressure drilling, and extended reach wells. Many of these drilling challenges are also encountered in high pressure and high temperature (HTHP) and ultra-deepwater field developments and mature, depleted fields. Early fluid developments focused on designing the fluids chemistry and physics interactions and the optimization of mineralogy of the weighing agent used. There was also some concern on variability of the results seen on the return permeability as well as standard fluid loss experiments. The paper describes the laboratory and field and rigsite data generated while using the MWA in IEFs during completion operations with a client in India. The paper will briefly describe the laboratory work before the application and the associated results observed on the rig site. It will also outline all the challenges which were faced during the execution and mixing of the MWA IEFs. Each separate operation required a high-density reservoir fluid solution above 15.5 ppg [1.85 sg]. Because corrosion, sag potential, and scale were the operator's main concerns, a solids-free brine or other type of weighting agent (for e.g. Calcium Carbonate and/or Tri-Manganese Tetra Oxide) solution was not favored. A high-density IEF designed with MWA allowed us to provide a solution that mitigated against the risks identified in each operation. The thin viscosity profile enabled completion activities to proceed with minimal fluid consumption at surface, reducing the overall environmental impact. The high-density (15.6 ppg [1.86 SG] and 16.2 ppg [1.94 SG]) invert emulsion fluid was designed to minimize sag potential with minimal reservoir damage potential. With a thinner viscosity profile compared to conventional IEFs at equivalent densities, the fluid enabled completion activities with minimal fluid volumes lost over shakers and reduced the environmental impact. The MWA that was used to build the IEF used for drilling and completion fluid enabled maintenance of extremely low-shear rate viscosities when compared to conventional barite-laden fluids. This fluid was used for suspending and abandoning the well in Case Study A, where the reentry and intervention of the well was planned to be after 2 years. After exposure of the fluid in Case Study A, the fluid showed minimum sag after re-entry of the well and the intervention activities were done without any problems. Case Study B showed that the fluid was mixed to the density of 16.2 ppg and was used to perforate and test two different zones. The bottom hole static temperature (BHST) reported were 356 degF (180 degC) for Case Study A and 376 degF (191 degC) for Case Study B respectively. The paper attempts to show the effects of using this alternative weighing agent as a completion fluid instead of a high-density solids-free brine or other solids-laden high-density brines and the associated success, which could be managed if the fluid design is carefully planned.


2019 ◽  
Vol 11 (7) ◽  
pp. 69 ◽  
Author(s):  
Frans Koketso Matlakala ◽  
Jabulani Calvin Makhubele ◽  
Prudence Mafa

The risk factors that compound alcohol abuse by young people have significant effects of individuals. The sole purpose of social work is to enhance the social functioning of clients and in most cases, clients have impairments as the result of high density of alcohol outlets, affordability of alcohol, which later give birth to psychosocial challenges. The aim of this study is to describe psychosocial and demographic factors compounding alcohol abuse amongst youth. The study employed quantitative approach and descriptive case study design. Data was collected at Musina High School and 96 learners were sampled using stratified sampling to complete the questionnaire. Data was analysed descriptively with the aid of Statistical Package for the Social Science. The study revealed that psychosocial and environmental factors compound to alcohol abuse amongst youth in Musina High School. The study concludes that the context determines the excessive use of alcohol abuse by youth. Young people especially those who reside in rural areas are exposed to high density of alcohol outlets and they are left without guardianship. Due to lack of guardian or parental involvement they end up indulging in excessive use of alcohol.


2008 ◽  
Author(s):  
Ian Moore ◽  
Bill Dragoset ◽  
Tor Ommundsen ◽  
David Wilson ◽  
Camille Ward ◽  
...  

2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Breno Bahia ◽  
Rongzhi Lin ◽  
Mauricio Sacchi

Denoisers can help solve inverse problems via a recently proposed framework known as regularization by denoising (RED). The RED approach defines the regularization term of the inverse problem via explicit denoising engines. Simultaneous source separation techniques, being themselves a combination of inversion and denoising methods, provide a formidable field to explore RED. We investigate the applicability of RED to simultaneous-source data processing and introduce a deblending algorithm named REDeblending (RDB). The formulation permits developing deblending algorithms where the user can select any denoising engine that satisfies RED conditions. Two popular denoisers are tested, but the method is not limited to them: frequency-wavenumber thresholding and singular spectrum analysis. We offer numerical blended data examples to showcase the performance of RDB via numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document