Use of Micronized Weighting Agents for High Density Completion Fluids: A Case Study

2021 ◽  
Author(s):  
Sufyan Deshmukh ◽  
Marcelo Dourado Motta ◽  
Sameer Prabhudesai ◽  
Mehul Patil ◽  
Yogesh Kumar ◽  
...  

Abstract A unique invert emulsion fluid (IEF) weighted up with treated micronized weighting agent (MWA) slurries has been developed and successfully implemented in the field as a completion and testing fluid. The utilization of this unique IEF by design allowed the fluid properties to be lower on viscosity and superior suspension characteristics, which allowed for thermally stable fluid and provided excellent downhole hydraulics performance. Much of the earlier development and deployment of this type of IEF was focused on drilling for sections in narrow mud weight and fracture gradient windows, coiled tubing operations, managed pressure drilling, and extended reach wells. Many of these drilling challenges are also encountered in high pressure and high temperature (HTHP) and ultra-deepwater field developments and mature, depleted fields. Early fluid developments focused on designing the fluids chemistry and physics interactions and the optimization of mineralogy of the weighing agent used. There was also some concern on variability of the results seen on the return permeability as well as standard fluid loss experiments. The paper describes the laboratory and field and rigsite data generated while using the MWA in IEFs during completion operations with a client in India. The paper will briefly describe the laboratory work before the application and the associated results observed on the rig site. It will also outline all the challenges which were faced during the execution and mixing of the MWA IEFs. Each separate operation required a high-density reservoir fluid solution above 15.5 ppg [1.85 sg]. Because corrosion, sag potential, and scale were the operator's main concerns, a solids-free brine or other type of weighting agent (for e.g. Calcium Carbonate and/or Tri-Manganese Tetra Oxide) solution was not favored. A high-density IEF designed with MWA allowed us to provide a solution that mitigated against the risks identified in each operation. The thin viscosity profile enabled completion activities to proceed with minimal fluid consumption at surface, reducing the overall environmental impact. The high-density (15.6 ppg [1.86 SG] and 16.2 ppg [1.94 SG]) invert emulsion fluid was designed to minimize sag potential with minimal reservoir damage potential. With a thinner viscosity profile compared to conventional IEFs at equivalent densities, the fluid enabled completion activities with minimal fluid volumes lost over shakers and reduced the environmental impact. The MWA that was used to build the IEF used for drilling and completion fluid enabled maintenance of extremely low-shear rate viscosities when compared to conventional barite-laden fluids. This fluid was used for suspending and abandoning the well in Case Study A, where the reentry and intervention of the well was planned to be after 2 years. After exposure of the fluid in Case Study A, the fluid showed minimum sag after re-entry of the well and the intervention activities were done without any problems. Case Study B showed that the fluid was mixed to the density of 16.2 ppg and was used to perforate and test two different zones. The bottom hole static temperature (BHST) reported were 356 degF (180 degC) for Case Study A and 376 degF (191 degC) for Case Study B respectively. The paper attempts to show the effects of using this alternative weighing agent as a completion fluid instead of a high-density solids-free brine or other solids-laden high-density brines and the associated success, which could be managed if the fluid design is carefully planned.

2003 ◽  
Author(s):  
D. Messler ◽  
J. Richey ◽  
J. Powell ◽  
D. Miller ◽  
J. Guidry

2021 ◽  
pp. 101747
Author(s):  
Thaís S. Oliveira ◽  
Diego de A. Xavier ◽  
Luciana D. Santos ◽  
Tiago U. Passos ◽  
Christian J. Sanders ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 1295-1310
Author(s):  
Burçin Atılgan Türkmen ◽  
Tuba Budak Duhbacı ◽  
Şeyma Karahan Özbilen

2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


2021 ◽  
Vol 11 (6) ◽  
pp. 2568
Author(s):  
Benjamin Kromoser ◽  
Matthias Braun ◽  
Maximilian Ortner

Timber truss systems are very efficient load-bearing structures. They allow for great freedom in design and are characterised by high material use in combination with a low environmental impact. Unfortunately, the extensive effort in design and production have made the manufacturing and application of these structures, in this day and age, a rarity. In addition, the currently mainly used steel gusset plates adversely affect the costs and environmental impact of the trusses. The authors’ goals are to optimise the design of timber trusses and to solely use wood for all building components. The two research areas, (1) optimisation of the truss geometry and (2) optimisation of the joints by using solely wood–wood connections, are addressed in this paper. The numerical optimisation strategy is based on a parametric design of the truss and the use of a genetic solver for the optimisation regarding minimal material consumption. Furthermore, first results of the tensile and compression behaviour of the chosen wood–wood connections are presented. The basic idea for the joints is to use a plywood plate as a connector, which is inserted into the truss members and fixed with wooden pegs. The housing of the new robot laboratory located at BOKU Vienna is considered a special case study for the research and serves as an accompanying example for the application of the research within the present paper.


Sign in / Sign up

Export Citation Format

Share Document