Integrated approach for the U-type horizontal well drilling & geosteering in shallow Turonian sands

Author(s):  
A. Valiakhmetov ◽  
V. Kramar ◽  
R. Khabibullin ◽  
I. Shmarin ◽  
V. Vorobev ◽  
...  
2021 ◽  
Author(s):  
Xiang Gao ◽  
Jiaxin Zeng ◽  
Jiajun Xie ◽  
Liang Tang ◽  
Wenzhe Li ◽  
...  

Abstract Horizontal well drilling contribute to a dramatic increase of shale gas production in unconventional reservoirs. However, the drilling is also risky and challenging with different types of drilling problems often encountered including stuck pipes, inflows, losses and pack-offs, etc. To reduce shale-gas development costs, shale gas operators are faced with finding effective solutions to minimize drilling risks and improve drilling efficiency. A holistic workflow, which can be divided into three steps: pre-drilled modelling and assessment, real-time monitoring, and post-drilled validation, is proposed. Based on the pre-drilled geomechanical modeling, mud weights, mud formulations and casing setting depths are optimized to ensure wellbore stability during the drilling process. Real-time operations involve monitoring drilling parameters and cavings characteristics (shape and volume), and providing updated recommendations for field drilling engineers to mitigate and reduce borehole instability related problems. During the post-drilled stage, the updated geomechanical model will be used for optimizing the drilling designs of upcoming wells. With geomechanics as foundation, a systematic workflow was developed to provide integrated solutions by using multiple technologies and services to reduce serious wellbore instability caused by abnormal formation pressures, wellbore collapse and other complex drilling problems. The implementation of the systematic and holistic workflow has proven to be extremely successful in supporting the drilling of shale gas wells in China. The integrated approach, which was applied in a Changning shale gas block in Sichuan Basin for the first time in March 2019, recorded an improvement in ROP by 111.2% and a reduction in mud losses by 89.9% compared with an offset well without the risk mitigation strategy applied in the same pad. The geomechanics-based approach provides a convenient and effective means to assist field engineers in mud weight optimization, drilling risk assessments, and horizontal well drilling performance evaluation. The approach can also be extended to reduce potential drilling risks and improve wellbore stability, all of which contributes to reducing drilling costs and optimizing subsequent massive hydraulic fracturing jobs.


2005 ◽  
Author(s):  
Herve Farran ◽  
Jeremy Harris ◽  
Saleh H. Al Jabri ◽  
Richard Robert Jackson ◽  
Saif Rashid Alkhayari ◽  
...  

2008 ◽  
Author(s):  
Parvez Jamil Butt ◽  
Raza Hassan Sayed ◽  
Timothy George Day ◽  
Abdallah Mohammad Behair ◽  
Saleh M. Dossari

2015 ◽  
Vol 733 ◽  
pp. 17-22
Author(s):  
Yang Liu ◽  
Zhuo Pu He ◽  
Qi Ma ◽  
Yu Hang Yu

In order to improve the drilling speed, lower the costs of development and solve the challenge of economies of scale development in sulige gas field, the key techniques research on long horizontal section of horizontal well drilling speed are carried out. Through analyzing the well drilling and geological data in study area, and supplemented by the feedback of measured bottom hole parameters provided by underground engineering parameters measuring instrument, the key factors restricting the drilling speed are found out and finally developed a series of optimum fast drilling technologies of horizontal wells, including exploitation geology engineering technique, strengthen the control of wellbore trajectory, optimize the design of the drill bit and BHA and intensify the drilling parameters. These technologies have a high reference value to improve the ROP of horizontal well in sulige gas field.


1996 ◽  
Author(s):  
A.L. Martins ◽  
C.H.M. Sa ◽  
A.M.F. Lourenco ◽  
W. Campos

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1623-1635 ◽  
Author(s):  
Ashish Kumar ◽  
Puneet Seth ◽  
Kaustubh Shrivastava ◽  
Ripudaman Manchanda ◽  
Mukul M. Sharma

Summary In ultralow-permeability reservoirs, communication between wells through connected fractures can be observed through tracer and pressure-interference tests. Understanding the connectivity between fractured horizontal wells in a multiwell pad is important for infill well drilling and parent-child well interactions. Interwell tracer and pressure-interference tests involve two or more fractured horizontal wells and provide information about hydraulic-fracture connectivity between the wells. In this work, we present an integrated approach based on the analysis of tracer and pressure interference data to obtain the degree of interference between fractured horizontal wells in a multiwell pad. We analyze well interference using tracer (chemical tracer and radioactive proppant tracer) and pressure data in an 11-well pad in the Permian Basin. Changes in pressure and tracer concentration in the monitor wells were used to identify and evaluate interference between the source and monitor wells. Extremely low tracer recovery and weak pressure response signify the absence of connected fractures and suggest that interference through matrix alone is insignificant. Combined tracer and pressure-interference data suggest connected fracture pathways between the communicating wells. The degree of interference can be estimated in terms of pressure response times and tracer recovery. An effective reservoir model was used to simulate pressure interference between wells during production. Simulation results indicate that well interference observed during production is primarily because of hydraulically connected fractures. Combined tracer and pressure-interference analysis provides a unique tool for understanding the time-dependent connectivity between communicating wells, which can be useful for optimizing infill well drilling, well spacing, and fracture sizing in future treatment designs.


2010 ◽  
Vol 139-141 ◽  
pp. 2397-2400
Author(s):  
Chun Jie Han ◽  
Tie Yan

During exploitation of horizontal well drilling engineering, the problem of drill string failure is very serious, there are many reasons, and drill string vibrations are main reasons. In this paper drill string of horizontal well is object being studied. The models about various vibrations are set up. The vibration rule of drill string is obtained under different situation; the axial and lateral frequency of drill string vibration in free state is studied. The analysis of modal vibration of drill string is the basis of the analysis of harmonic vibration of drill string. The harmonic vibrations rules of drill string of horizontal well are studied. All sorts of resonance frequencies are obtained practicability. This study can prove basic method for optimizing drill tool of horizontal well and reducing drill string failure.


Sign in / Sign up

Export Citation Format

Share Document