GASEOUS POLLUTANTS GENERATED DURING DRY AND HYDROUS PYROLYSIS OF COAL WASTE: SIMULATION OF THE SELF-HEATING PROCESSES

Author(s):  
D. Więcław ◽  
K. Jurek ◽  
A. Kowalski ◽  
E. Bilkiewicz ◽  
M.J. Fabiańska ◽  
...  
2021 ◽  
Author(s):  
M.J. Fabiańska ◽  
D. Więcław ◽  
M. Misz-Kennan ◽  
E.A. Szram ◽  
J. Ciesielczuk ◽  
...  

Mineralogia ◽  
2015 ◽  
Vol 46 (1-2) ◽  
pp. 29-40 ◽  
Author(s):  
Ádám Nádudvari ◽  
Monika J. Fabiańska ◽  
Magdalena Misz-Kennan

AbstractSeveral types of coal waste (freshly-dumped waste, self-heated waste and waste eroded by rain water), river sediments and river water were sampled. The aim was to identify the types of phenols present on the dumps together with their relative abundances. Gas chromatography-mass spectrometry (GC-MS) analyses of a large number of samples (234) statistically underpin the phenol distributions in the sample sets. The largest average relative contents (1.17-13.3%) of phenols occur in the self-heated samples. In these, relatively high amounts of phenol, C1- and C2-phenols reflect the thermal destruction of vitrinite. In fresh coal waste, C2- and C3-phenols that originated from the bacterial/fungal degradation and oxidation of vitrinite particles are the most common (0.6 rel.%). Water-washed coal waste and water samples contain lower quantities of phenols. In the river sediments, the phenols present are the result of bacterial- or fungal decay of coaly organic matter or are of industrial origin.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1120
Author(s):  
Dariusz Więcław ◽  
Krzysztof Jurek ◽  
Monika J. Fabiańska ◽  
Elżbieta Bilkiewicz ◽  
Adam Kowalski ◽  
...  

Twenty-seven gases and sixteen rock wastes from the thermal active Rymer coal waste dump were collected. The composition and origin of gaseous, liquid, and solid pollutants emitted during the self-heating process and the development of these processes with time were established. Gases were subjected to determination of molecular and stable isotope (δ13C and δ2H) composition. Rock-Eval pyrolysis and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) were applied for evaluation of the quantity and molecular composition of pyrolysates released during the heating of rocks in temperatures from 100 to 650 °C. The main products of Py-GC-MS are released between 350 and 650 °C, namely alkanes, aromatic hydrocarbons, and aromatic alcohols. These components were also recorded in Py-GC-MS products of samples collected from the dump surface. Besides the high-molecular-weight organic compounds, in emitted gases CO2, CO, gaseous hydrocarbons, and S-compounds were recorded. The stable isotope data indicated that methane was generated mainly during the low-temperature thermogenic process, but a share of the microbial-originated gas was visible. The source of the CO2 was the oxidation of organic matter. The gaseous S-compounds were products of high-temperature decomposition of sulphides and organic S-compounds. The hydrocarbon and CO contents of the emitted gases proved to be good indicators for tracking of the self-heating processes.


2011 ◽  
Vol 54 (25-26) ◽  
pp. 5200-5206 ◽  
Author(s):  
A. Ejlali ◽  
D.J. Mee ◽  
K. Hooman ◽  
B.B. Beamish

2002 ◽  
Vol 15 (5) ◽  
pp. 385-390 ◽  
Author(s):  
B.B Beamish ◽  
A.G Lau ◽  
A.L Moodie ◽  
T.A Vallance
Keyword(s):  
The Self ◽  

Sign in / Sign up

Export Citation Format

Share Document