scholarly journals Self-potential Inversion for the Permeability and Streaming Current Coefficient Using the Rock Physical Empirical Law

Author(s):  
Y. Ozaki ◽  
H. Mikada ◽  
T. Goto ◽  
J. Takekawa
2007 ◽  
Vol 11 (5) ◽  
pp. 1661-1671 ◽  
Author(s):  
A. Bolève ◽  
A. Revil ◽  
F. Janod ◽  
J. L. Mattiuzzo ◽  
A. Jardani

Abstract. The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.


2007 ◽  
Vol 4 (3) ◽  
pp. 1429-1463 ◽  
Author(s):  
A. Bolève ◽  
A. Revil ◽  
F. Janod ◽  
J. L. Mattiuzzo ◽  
A. Jardani

Abstract. The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation is also easily extendable to non-viscous laminar flow problems (high Reynolds number ground water flow in cracks for example) and to unsaturated conditions with applications to the vadose zone. We demonstrate here that this formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between the finite element simulations performed with the finite element code Comsol Multiphysics 3.3 and field observations. Finally, this formulation seems also very promising for the inversion of the geometry of ground water flow from the monitoring of self-potential signals.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


2016 ◽  
Vol 136 (5) ◽  
pp. 291-296
Author(s):  
Hideo Sakai ◽  
Tsuyoshi Kobayashi ◽  
Yoshinori Izumi ◽  
Takeshi Nakayama ◽  
Katsumi Hattori

1989 ◽  
Vol 21 (6-7) ◽  
pp. 443-453 ◽  
Author(s):  
S. K. Dentel ◽  
K. M. Kingery

In spite of the increased use of streaming current detectors (SCDs) as a means of monitoring and/or controlling coagulant dosage, knowledge regarding fundamental workings is incomplete. This paper provides an initial attempt at predicting and verifying functioning compared to electrophoretic mobility. The instrument's components -- the sensor and the signal processor -- are first described. Equations modelling electro-double layer behavior in its sensor are then developed. Simplifying assumptions include the use of a capacitance model of the double layer and a triangular velocity profile for fluid within the sensor's annulus. More complex modelling approaches are also suggested which incorporate the Gouy-Chapman electro-double layer model and an exact solution for the velocity profile. Experimental results confirm predictions of the simplified model under conditions of low potential. A monotonic relationship exists between streaming current electrophoretic mobility, which is required for its use as a control parameter. Deviations from model predictions are suggested to be due to charge characteristics of the sensor surfaces themselves.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 263-272 ◽  
Author(s):  
Chiaki Igarashi ◽  
Kazunari Tanaka ◽  
Teruaki Kitamura ◽  
Kazuo Fujita ◽  
Kazuaki Arai ◽  
...  

In a sludge dewatering process using polymer, controlling the polymer dosage is an important factor for upgrading performance and achieving a saving on costs. A new automatic polymer dosage control method has been developed by the authors, which features the use of a streaming current detector or a colloid titrator. These detectors detect the colloidal charge of the filtrate from sludge. The said method was used with actual dehydrators and the following advantages were confirmed.(1) The said method is applicable for various types of dehydrators.(2) The said method is effective even when there are changes in sludge characteristics.(3) The said method is more economical than a conventional solids proportional control method in that less polymer is used.


1997 ◽  
Vol 36 (4) ◽  
pp. 127-134 ◽  
Author(s):  
J. C. Liu ◽  
M. D. Wu

A fuzzy logic controller (FLC) incorporating the streaming current detector (SDC) was utilized in the automatic control of the coagulation reaction. Kaolinite was used to prepare synthetic raw water, and ferric chloride was used as the coagulant. The control set point was decided at a streaming current (SC) of −0.05 and pH of 8.0 from jar tests, zeta potential and streaming current measurements. A bench-scale water treatment plant with rapid mix, flocculation, and sedimentation units, operated in a continuous-flow mode, was utilized to simulate the reaction. Two critical parameters affecting the coagulation reaction, i.e., pH and streaming current, were chosen as process outputs; while coagulant dose and base dose were chosen as control process inputs. They were on-line monitored and transduced through a FLC. With raw water of initial turbidity of 110 NTU, residual turbidity of lower than 10 NTU before filtration was obtained. Results show that this combination functions satisfactorily for coagulation control.


Sign in / Sign up

Export Citation Format

Share Document