Characterization of Prophages in Leuconostoc Derived from Kimchi and Genomic Analysis of the Induced Prophage in Leuconostoc lactis

Author(s):  
Song-Hee Kim ◽  
Jong-Hyun Park
2012 ◽  
Vol 51 (4) ◽  
pp. 193-199 ◽  
Author(s):  
Makiko Sakka ◽  
Satoshi Tachino ◽  
Hirotaka Katsuzaki ◽  
J. Susan van Dyk ◽  
Brett I. Pletschke ◽  
...  

2021 ◽  
Vol 67 (4) ◽  
pp. 203-215
Author(s):  
Jeff S Chueh ◽  
Kang-Yung Peng ◽  
Vin-Cent Wu ◽  
Shuo-Meng Wang ◽  
Chieh-Kai Chan ◽  
...  

Somatic mutation in the KCNJ5 gene is a common driver of autonomous aldosterone overproduction in aldosterone-producing adenomas (APA). KCNJ5 mutations contribute to a loss of potassium selectivity, and an inward Na+ current could be detected in cells transfected with mutated KCNJ5. Among 223 unilateral primary aldosteronism (uPA) individuals with a KCNJ5 mutation, we identified 6 adenomas with a KCNJ5 p.Gly387Arg (G387R) mutation, previously unreported in uPA patients. The six uPA patients harboring mutant KCNJ5-G387R were older, had a longer hypertensive history, and had milder elevated preoperative plasma aldosterone levels than those APA patients with more frequently detected KCNJ5 mutations. CYP11B2 immunohistochemical staining was only positive in three adenomas, while the other three had co-existing multiple aldosterone-producing micronodules. The bioinformatics analysis predicted that function of the KCNJ5-G387R mutant channel could be pathological. However, the electrophysiological experiment demonstrated that transfected G387R mutant cells did not have an aberrantly stimulated ion current, with lower CYP11B2 synthesis and aldosterone production, when compared to that of the more frequently detected mutant KCNJ5-L168R transfected cells. In conclusion, mutant KCNJ5-G387R is not a functional KCNJ5 mutation in unilateral PA. Compared with other KCNJ5 mutations, the observed mildly elevated aldosterone expression actually hindered the clinical identification of clinical unilateral PA. The KCNJ5-G387R mutation needs to be distinguished from functional KCNJ5 mutations during genomic analysis in APA evaluation because of its functional silence.


2020 ◽  
Vol 76 (1) ◽  
pp. 91-100
Author(s):  
Jorge Arca-Suárez ◽  
Cristina Lasarte-Monterrubio ◽  
Bruno-Kotska Rodiño-Janeiro ◽  
Gabriel Cabot ◽  
Juan Carlos Vázquez-Ucha ◽  
...  

Abstract Background The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. Objectives Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. Methods Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. Results The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. Conclusions Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa.


2013 ◽  
Author(s):  
Angela S. Baker ◽  
Esteban Braggio ◽  
Susana Jacobus ◽  
Sungwon Jung ◽  
Dirk Larson ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document